
A Domain Specific Language for Modeling Differential Constraints of
Mobile Robots

Marco Guarnieri, Eros Magri, Davide Brugali, Luca Gherardi

Abstract— Kinematics and dynamics constraints of mobile
robots can be modeled by means of differential equations.
Simulation and sampling based path-planning algorithms need
a model of these constraints in order to deal with non-holonomic
mobile robots.

Usually these models are hard-coded in the implementation
of those algorithms and this makes hard their reuse. In order
to design these algorithms in a modular and extensible way
we have to explicitly represent the models of the robots and
decouple them from algorithms implementation.

We propose DCML, a Domain Specific Language that can
be used in order to describe differential models, and a tool
that allows developers to automatically generate the code that
implements the model. We also aim to show how this Model-
Driven Engineering technique can be used with good results.
As a demonstration of what can be done by means of our
DSL, we present the differential model of an omnidirectional
holonomic robot called BART, and we show how this model
can be integrated in a framework for path planning.

I. INTRODUCTION

Differential equations are widely used for modeling kine-
matics and dynamics constraints of mobile robots, for
example in simulation and sampling-based path planning
algorithms. Differential models express relations between
configuration variables. The possible states of a mobile robot
are represented in the state space X and each state represents
a particular configuration of the robot. For wheeled mobile
robots each state ~x ∈ X is ~x = (x, y, θ), where x and y
represent the position of the robot in the plane and θ is
its orientation. In the same way it is possible to define the
action space U , which is the set of all the possible actions on
all the possible states (an action is a response of the robot,
which changes its current state, to an external input). Thus a
differential model can be represented as ~̇x = f(~x, ~u) where
~x ∈ X is the starting state, ~u ∈ U is the action applied to the
model and f is a function, called state transition function,
that defines the relation between state space and action space
[1, Ch. 13]. The results are expressed in terms of velocities
~̇x and the outcome of their integration represents the future
states that satisfy the kinematics constrains.

These models are widely used in simulation algorithms
(that, given the starting configuration and the action vector,
compute the final configuration of the robot) and sampling-
based motion planning algorithms (that sample collision
free configurations that need to be compatible with the

M. Guarnieri, E. Magri, D. Brugali and L. Gherardi are with the Dept.
of Information Technology and Mathematics, University of Bergamo,
24044 Dalmine, Italy 0guarnieri.marco0@gmail.com,
erosmagri@gmail.com, brugali@unibg.it,
luca.gherardi@unibg.it

differential constraints). In order to compute final config-
urations it is necessary to solve the differential equations
and this can be done by means of solvers, which use nu-
merical approximation techniques. However solvers require
that differential equations are implemented in the source
code fulfilling specific interfaces, and implementing these
equations is usually error prone and not trivial. Another
problem is that differential models are usually hard-coded in
the implementation of these algorithms, hence the algorithm
implementation is hard-coupled to the specific robot.

In order to achieve higher flexibility, modularity, easier
extensibility with respect to the current situation and to
solve the problems presented before, a higher level rep-
resentation of those models is needed. Domain specific
languages (DSLs) provide this higher level representation.
DSLs are simple formal languages, usually declarative, used
to represent domain specific knowledge using some sort of
syntax. DSLs let you describe easily a scenario in a specific
domain.

The syntax and semantic of these DSLs are designed ex-
plicitly to describe only the knowledge of a specific domain
and thus DSLs have a gain in terms of expressiveness and
ease of use compared to general purpose languages for the
specific domain. Conversely they are usually less expressive
than general-purpose programming languages out of their
domain. In this way they can also improve productivity and
maintenance costs. More details on DSLs can be found in
[2] and [3].

DSLs have also other advantages over general-purpose lan-
guages while expressing knowledge in the specific domain:

• being less expressive and complex than general purpose
languages, DSLs can be used also by people that are not
expert programmers;

• manual implementation of the model can require expe-
rience in computer programming and it is error prone
while you can usually generate code from a DSL
document in an in automated way;

• the model itself can be used as documentation;
• ease the communication between programmers and do-

main experts;
• ease the description of the scenario;
• can decouple the representation of the model from the

technologies and interfaces used in the implementation.
In this paper we present DCML, Differential Constraints

Modeling Language, a Domain Specific Language that al-
lows the description of such kind of models with a high
level of abstraction from implementation details. DCML, in
addition to the advantages presented above, provides devel-

opers with an automatic way to generate the code that imple-
ments the differential equations starting from the differential
model, which describes the relations between state space
and action space of a specific robot. This implementation
can then be used by motion planning algorithms in order
to do the simulation of the behavior of the robot itself. In
order to develop DCML, we have followed a Model Driven
Engineering (MDE) approach. MDE has already shown good
results in robotics in terms of reusability and integration, as
shown in [4] or [5], and thus we aim to demonstrate that
this approach can be applied with good results also to the
representation of differential models.

Section II presents some related work. Section III de-
scribes DCML more in detail, while Section IV shows how
our language can be used for writing the differential model of
an omnidirectional holonomic robot and how the generated
code can be integrated in a framework for simulation and
planning for mobile robots. Finally Section V presents our
conclusions.

II. RELATED WORK

Despite our research and this paper focus only on the use
of differential models in sampling-based motion planning
algorithms for the simulation of robots behaviour in response
to specific actions, differential models are widely used also
in other robotics fields. They can be used to describe several
kinds of robots: [1] and [6] present differential models of
some wheeled mobile robots under kinematics and dynamics
constraints, while [7] shows a model of an hexapod robot.
An extension of differential models, that can take into
account also dynamics constraints, are phase-space models
that consider also accelerations and can then be described as
ẍ = f(ẋ, x, u). Each second order model can be converted
in a first-order model, which is a differential model, using a
phase space, that has more dimension than the state space of
the second order model. In this way we can represent, using
differential models, also dynamic constraints. In the same
way a kth-order model can be expressed as a differential
model using an adequate phase space. Thus differential
models can be used for motion planning under kinematics
and dynamics constraints, as shown in [1, Ch. 14].

A first way of defining differential models with an
higher level of abstraction than hardcoded solutions is us-
ing Simulink 1. It provides developers with a toolchain
for defining, through block diagrams, differential models
and generating from these diagrams C and C++ code that
implements them. In our opinion this approach is not flexible
enough because it does not allow the generation of code in
other programming languages and also because it does not
allow developers to customize the generated code, in terms
of interface and optimization.

Another approach is using a dedicated Domain Specific
Language. Literature presents, up to now, a few DSLs
to describe differential equations. The MyFEM language,

1Simulink - www.mathworks.com/products/simulink/

presented in [8], is a DSL for the definition of partial-
differential equations using a subset of the Python language.
It allows the generation of C++ code that implements the
model defined in MyFem but it has not got an IDE. Scalation
[9] is an embedded DSL defined over the Scala programming
language, and it has a package that allows the representation
of systems of differential equations. These approaches use
subsets of existing programming languages to define the
DSLs. This has some advantages, such as less learning time,
but it has also the big drawback that the resulting DSL is
too close to the general purpose language and thus it has
less abstraction than a dedicated DSL and requires too much
effort to be used by users that are not expert programmers.
Another drawback of both approaches is that the syntax
used to express differential equations is too far from the
mathematical formalism because it is tied to the syntax of
native programming languages.

Other approaches, such as the one in [10] that defines a
specification language for partial differential equations on a
union of rectangles, or [11] that defines differential equations
using the arrow notation, are, in our opinion, too complex and
difficult in order to be used as an effective aid to developers.
A common disadvantage of all these approaches is that they
are tied to work only with a fixed set of numerical solvers.

Given the fact that existing solutions for representing
differential equations are too complex or do not offer enough
flexibility in the code generation phase we decided to create a
new DSL for representing differential models. DCML offers
two advantages with respect to existing solutions. Firstly the
syntax used to describe differential equations is close to the
mathematical one, and secondly DCML is not tied to work
with a fixed set of differential equations solvers.

III. DIFFERENTIAL CONSTRAINTS MODELING
LANGUAGE

DCML allows users to describe constraints that affect
mobile robots by means of differential models. In this
way users can focus on the description of the differential
equations.

A simple model, taken from [1], that can be used to
describe the constraints of a differential drive, a mobile robot
with two independent wheels, is presented in 1.

ẋ =
r

2
(ul + ur)cosθ

ẏ =
r

2
(ul + ur)sinθ (1)

θ̇ =
r

L
(ur − ul)

The state vector (x, y, θ) represents the cartesian position
of the robot while the action vector u = (ul, ur) represents
angular velocities of the wheels, r is the radius of each wheel
while L is the distance between the two wheels.

Listing 1 shows the DCML document representing the
differential drive presented above, and it will be used to
describe how our language works. It describes the model of
the differential drive presented above. A document written

Fig. 1. Validation and Code generation process

by means of our DSL can describe several models and for
each model the user can specify:

• The action space: after the keyword ACTION the user
can specify all the actions. In the differential drive
example we have two actions ul and ur.

• The configuration space: after the keyword CONFIG
the user can specify the dimensions of each configura-
tion. In the example each configuration can be expressed
in terms of x, y, θ.

• After the keyword PARAM the user can define the
parameters of the model. In our example they are r
and L.

• The state transition function of the model can be
expressed by means of differential equations in an
understandable way.

• After the keyword VAR the user can define some tem-
porary variables that can be used to ease the definition
of differential constraints.

• After the keyword CONST the user can define some
constant values, different from the predefined ones, such
as π and e.

• After the keyword PACKAGE the user can define the
package in which the source code will be created. In
the example we have decided that we want to create
the source code in the package robotics.models.

• If the model definition isn’t expressive enough, further
comments can be added with a JavaDoc style notation.

1 BEGIN DifferentialDrive
2 PACKAGE : robotics.models;
3 ACTION : u_l, u_r;
4 PARAM : L, r;
5 CONFIG : x, y, theta;
6

7 d(x) = r / 2 ∗ (u_l + u_r) ∗ cos(theta);
8 d(y) = r / 2 ∗ (u_l + u_r) ∗ sin(theta);
9 d(theta) = (r / L) ∗ (u_r − u_l);

10 END;

Listing 1. Differential Drive model

While actions, configurations and differential equations are
mandatory, the other elements are useful only for describing
more complex models (see Section IV). We will describe,
now, the structure of the grammar of our DSL, that is shown
in Listing 2. A grammar has four main components, [12]:

1) a set Σ of terminals, which are the basic symbols that
form valid instructions of our language;

2) a set V of non-terminals, that are syntactic variables
that represent set of strings;

3) a non-terminal s ∈ V that acts as start symbol;
4) a set P of productions, that define how terminals and

non-terminals can be combined in order to generate
valid strings.

For our grammar the set Σ is equal to {“**”, “*\”,
“BEGIN”, “END”, “;”, “PACKAGE”, “:‘”, “ACTION”,
“PARAM”, “CONST”, “CONFIG”, “VAR”, “,”, “+”, “-
”, “*”, “\”, “(”, “)”, “d(”, ID, PCKG ID, NUM, COM-
MENT} where ID represents an alphanumerical identifier,
NUM is a numeric literal and PCKG ID is a package
identifier. The set V is composed by {modelList, model,
package, actions, params, constants, configurations, vari-
ables, varList, constList, varDef, constDef, assignments, as-
signment, var, expr, term, factor, paramList} and the start
symbol is modelList.

The grammar is expressed using the Extended Backus-
Naur Form (EBNF) [13] that describes each produc-
tion in the form A → f(V1, . . . , Vn, α1, . . . , αm) where
A, V1, . . . , Vn ∈ V , α1, . . . , αm ∈ Σ and f is a function
that concatenates symbols using regular expressions. A pro-
duction means that the non-terminal on the left hand side
can be replaced by the regular expression on the right hand
side of the → operator.

1 modelList −> model(model)∗
2 model −> [‘‘/∗∗” COMMENT ‘‘∗/”] BEGIN ID [package]

actions [params] [constants] configurations
[variables] assignments END‘‘;”

3 package −> PACKAGE ‘‘:” PCKG ID‘‘;”
4 actions −> ACTION ‘‘:” varList ‘‘;”
5 params −> PARAM ‘‘:” varList ‘‘;”
6 constants −> CONST ‘‘:” constList ‘‘;”
7 configurations −> CONFIG ‘‘:” varList ‘‘;”
8 variables −> VAR ‘‘:” varList ‘‘;”
9 varList −> varDef (‘‘,” varDef)∗

10 constList −> constDef (‘‘,” constDef)∗
11 varDef −> ID
12 constDef −> ID ‘‘=” (‘‘+” | ‘‘−”)NUM
13 assignments −> assignment (assignment)∗
14 assignment −> var ‘‘=” expr‘‘;”
15 var −> ID | ‘‘d(” ID ‘‘)”
16 expr −> term ((‘‘+” | ‘‘−”)term)∗
17 term −> factor ((‘‘∗” | ‘‘/”)factor)∗
18 factor −> NUM | ‘‘(” expr ‘‘)” | var[‘‘(”paramList‘‘)”]
19 paramList −> expr(‘‘,” expr)∗

Listing 2. DSL Grammar

The first production (row 1) involves the modelList termi-
nal, and means that a document of our DSL must contain at
least one model. The second production describes the syntax
of each model, it must be enclosed between a “BEGIN”
instruction and an “END” instruction and the ID must be
unique in the document. Symbols enclosed between square
brackets are optional. In the differential drive example the
ID is DifferentialDrive.

The productions at rows 4,5,7,8 define that, after the spe-
cific keywords, a list of variable declarations is needed. These
lists represent, respectively, actions, parameters, configura-
tions, and temporary variables. Each variable list, represented

1 package robotics.models;
2

3 public class DifferentialDrive implements IFirstOrderModel {
4

5 private double L, r, u_l, u_r;
6

7 public void setAction(double[] actions) {
8 if (actions.length != 2)
9 throw new IllegalArgumentException(‘‘Actions must have size 2.’’);

10 u_l = actions[0];
11 u_r = actions[1];
12 }
13 public void setParameters(double[] parameters) {
14 if (parameters.length != 2)
15 throw new IllegalArgumentException(‘‘Parameters must have size 2.’’);
16 L = parameters[0];
17 r = parameters[1];
18 }
19 public void computeDerivatives(double t, double[] y, double[] yDot) throws DerivativeException{
20 yDot[0] = r / 2 ∗ (u_l + u_r) ∗ java.lang.Math.cos(y[2]);
21 yDot[1] = r / 2 ∗ (u_l + u_r) ∗ java.lang.Math.sin(y[2]);
22 yDot[2] = (r / L) ∗ (u_r − u_l);
23 }
24 }

Listing 3. Differential Drive implementation

by the non-terminal varList, is made up of one or more
variable declarations (row 9), each one consisting in an ID,
as shown in the production at row 11, that must be unique in
the model. In a similar way the production that has as head
the non-terminal constants (row 6) defines that, after the
keyword “CONST”, a list of constant declarations constList
(row 10) is needed. Each constant declaration is made up of
an ID, unique in the model, and a numeric literal, as shown
in the production 12.

The non-terminal assignments can be replaced by a
list of differential equations. Each equation is defined as
var = expr, where var is a non-terminal that represents,
as shown in production 15, either a differential variable
of the first order, or an already defined identifier. expr
represents an algebraic expression composed by predefined
functions, such as sin or cos, parenthesized expressions,
numeric literals, predefined constants, such as π, or instances
of the var non-terminal and also the usual mathematical
operators +,−, ∗, /.

In order to validate and generate the code that implements
the models expressed using our DSL we have defined the
process shown in Figure 1. It can be divided in two phases.
In the first one, the parsing phase, the document is validated.
The parser checks that the document is correct, both from a
syntactic point of view (it must respect the syntactic rules)
and also from a semantic point of view (e.g. the parser checks
that the document does not contains undeclared variables,
non unique identifiers or function invocations with a wrong
number of parameters). In this phase the parser builds,
starting from the document, the Abstract Syntax Tree (AST)
that is an intermediate representation of the model. The AST
is a tree representation of the syntactic structure of the model
enriched with some useful semantic information elaborated
during the parsing phase.

Taking the AST as input, we can start the second phase, i.e.

the translation phase, which creates the code that implements
the differential model by means of a general purpose pro-
gramming language. This can be done by simply visiting the
AST, because it is a tree structure bearing all the information
needed for the translation.

The decision of generating an intermediate representation
by means of ASTs, instead of performing directly the trans-
lation during the parsing phase has some advantages:

• allows the validation of the model without performing
the translation;

• by decoupling the translation form the parsing phase
we can develop and use several translators, which
target several programming languages and/or numerical
solvers, without modifying the parser. This is possible
because the parsing phase is completely separated by
details regarding the generation of the code.

Despite this solution is a bit less efficient than performing the
translation during the parsing phase, it has great advantages
in terms of extensibility and flexibility. The Java code gener-
ated from the differential drive example is shown in Listing
3. This code is written to be compatible with numerical
solvers provided by the Apache Commons Math library2. The
generated class implements the interface IFirstOrderModel,
which extends the interface FirstOrderDifferentialEquation
defined in the Apache Math library. It defines three methods:
1) computeDerivatives, called by the solver, contains the
definition of the state transition function (the state ~x is
mapped on the array y, while the velocities ~̇x are mapped on
yDot), 2) setParameter that can be used to set the parameters
of a specific robot, 3) setAction that can be used to set the
actions. The methods setParameter and setAction are called
by the simulator.

Using our DSL users can focus only on modeling the
state transition function of the robot. The code can be

2Apache Commons Math - http://commons.apache.org/math/

automatically generated by translators optimized accordingly
to both the destination programming language and the model
interface. In this way the details related to the model im-
plementation (e.g. the numerical solver used to solve the
equations) can be completely hidden to the user and the task
of creating optimized code can be delegated to the writer of
the translator. Our approach allows developers to define new
translators in order to generate code optimized accordingly
to real-time and computational requirements.

The grammar of our DSL was defined by using AntLR33.
We used it also for the definition of the semantic actions
and for building the AST tree. AntLR is a parser generator
that reduces the time and effort needed to build and maintain
language processing tools.

One of the problems of MDE is that developers, in order
to use MDE techniques, usually need tools that support
them in the management and development of models. Thus,
in order to create such a tool we have decided to use
the Xtext framework4, which provides a simple way for
creating textual DSLs and to automatically generate a full-
featured Eclipse Text Editor from the grammar. The grammar
implemented in the Xtext editor is the same used for the
parser, without semantic actions.

We choose to implement the parser separately from the
editor for two reasons. First, thanks to AntLR we can have
better control on the definition of the syntax and the semantic
of our language and on the AST creation phase than using
Xtext. Second, by using AntLR we have created a tool that
can be used also in a stand-alone way, or can be integrated
in others IDEs.

In this way we can use Xtext in order to integrate our
DSL in the Eclipse IDE, that is by now one of the de
facto standards in terms of IDEs and has several plugins
related to model driven engineering. This integration gives
to developers useful features such as auto-completion and
syntax highlighting, while expressing the grammar using
AntLR give us the power of expressing complex semantic
rules.

In order to integrate the parser in the editor we have added
a button that allows the invocation of the parser, which takes
the model as input and validate it. Then, in the case that the
model is correct, the Java translator is invoked. It takes the
AST produced by the parser and translate it into the Java
class that implements the differential equations of the model
and fulfills the interface for differential models.

IV. CASE STUDY

Using DCML we can describe models of simple robots,
such as the differential drive described in Section III, or
models of more complex robots like BART.

BART is an omnidirectional holonomic wheeled robot,
developed by the Software for Experimental Robotics Lab
(SERL) at the University of Bergamo. It is made up of
two steering blocks and two free wheels. Each block is a

3ANother Tool for Language Recognition - http://www.antlr.
org/

4Xtext - http://www.xtext.org/

differential drive and the rotational joint is not on the axis of
its wheels. The mechanical structure of the robot is presented
in Figure 2. BART is slightly similar to the robots presented
in [14] and [15].

As a case of study we will show how the kinematic model
of BART can be expressed by means of our DSL. While

Fig. 2. BART robot

modeling the kinematics of BART robot defining the rigid
bodies that made it up can be quite difficult, modeling the
general kinematics of the robot can be done quite easily using
differential models, and thus in our DSL, as shown in Listing
4.

We choose to use as configuration space of the BART
robot the variables x, y and theta (cartesian position and
the orientation of the center of the robot), the variables
x front, y front and phi front (cartesian position and
orientation of the joint that connects the base of the robot to
the frontal differential drive, related to the absolute reference
system), and the variables x rear, y rear and phi rear
(position and orientation of the rear steering block).

The parameters of the model are tt wheel half axis, that
represents the half length between the wheels in one of the
differential drives, tt wheel radius, that is the radius of
each wheel of the steering blocks, and tt steer offset, that
is the distance between the steering axis and the axis of the
wheels of the robot. We introduce a variable k that represents
the ratio between tt steer offset and tt wheel half axis
to simplify the writing of the differential equations. The
actions accepted by the robot are the values left f s and
right f s, that represent the angular speeds of left and right
wheels of the frontal steering block, and the values left r s
and right r s, that represent the angular speeds of left and
right wheels of the rear differential drive.

The differential model of BART can be divided in three
parts. The first one, that involves x front, y front and
phi front variables, expresses the differential equations
needed to compute the position of the joint of the front
steering block. It is an extension of the differential model
for a standard differential drive that considers also the fact
that the rotational joint is not on the axis of the differential
drive. The second part, involving variables x rear, y rear
and phi rear, is quite similar to the first one but it is
related to the rear steering block. The last part of the model,
involving variables x, y and theta, computes the position of
the center of the BART robot. This part is not made up of
differential equations because these values can be computed
with algebraic equations from the values of the two steering
blocks.

We developed a Java framework that implements some
well known algorithms for sampling-based path planning.

1 BEGIN Bart
2 PACKAGE : robotics.models;
3 ACTION : left_f_s, right_f_s, left_r_s, right_r_s;
4 PARAM : tt_wheel_half_axis, tt_wheel_radius, tt_steer_offset;
5 CONFIG : x, y, theta, x_front, y_front, phi_front, x_rear, y_rear, phi_rear;
6 VAR : k;
7

8 k = tt_steer_offset / tt_wheel_half_axis;
9

10 d(x_front) = (tt_wheel_radius /2) ∗ (((cos(phi_front) − k ∗ sin(phi_front)) ∗ right_f_s) + ((cos(phi_front
) + k ∗ sin(phi_front)) ∗ left_f_s));

11 d(y_front) = (tt_wheel_radius /2) ∗ (((sin(phi_front) + k ∗ cos(phi_front)) ∗ right_f_s) + ((sin(phi_front)
− k ∗ cos(phi_front)) ∗ left_f_s));

12 d(phi_front) = (tt_wheel_radius / (2 ∗ tt_wheel_half_axis)) ∗ (right_f_s − left_f_s);
13

14 d(x_rear) = (tt_wheel_radius /2) ∗ (((cos(phi_rear) − k ∗ sin(phi_rear)) ∗ right_r_s) + ((cos(phi_rear) + k
∗ sin(phi_rear)) ∗ left_r_s));

15 d(y_rear) = (tt_wheel_radius /2) ∗ (((sin(phi_rear) + k ∗ cos(phi_rear)) ∗ right_r_s) + ((sin(phi_rear) − k
∗ cos(phi_rear)) ∗ left_r_s));

16 d(phi_rear) = (tt_wheel_radius / (2 ∗ tt_wheel_half_axis)) ∗ (right_r_s − left_r_s);
17

18 x = (x_front + x_rear)/2;
19 y = (y_front + y_rear)/2;
20 theta = atan2((y_front−y_rear),(x_front−x_rear)) + (pi / 4);
21 END;

Listing 4. BART model

All these algorithms depend on the model of the robot under
simulation and thus, the differential model is, for all of
them, an input parameter. Using DCML we can modify the
implementation of the differential model without changing
directly any line of source code. We simply have to modify
the DCML document and regenerating from it the new code.
In order to do this we have developed a DCML to Java
translator that, taken as input the AST of the model, creates
the class that implements the model itself.

V. CONCLUSIONS

In this paper we have shown how, using a Domain Specific
Language, it is possible to describe the differential model of
a mobile robot. We have also shown how an intermediate
representation of the model by means of an AST is useful
in order to use translators that can generate optimized code
for any target platform. In this way the model is independent
from the actual implementation. We have also presented the
tool suite that can be used in order to define and generate
implementations of DCML models.

This work shows that MDE can be used with good results
in specific areas, such as the representation of differential
models, in which the representation of the knowledge can be
formalized in a defined model. The integration of the gen-
erated models in the path planning framework demonstrates
that the technique can have useful application also in a real
environment.

APPENDIX

The DCML Eclipse Tool and some example can be found
at http://robotics.unibg.it/software/dcml/.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. FP7-
ICT-231940-BRICS (Best Practice in Robotics).

REFERENCES

[1] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[2] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not., 35, 2000.

[3] M. Mernik, J. Heering, and A.M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys (CSUR), 37(4),
2005.

[4] C. Schlegel, T. Haßler, A. Lotz, and A. Steck. Robotic software
systems: From code-driven to model-driven designs. In Advanced
Robotics, 2009. ICAR 2009. International Conference on. IEEE, 2009.

[5] Christian Schlegel, Andreas Steck, Davide Brugali, and Alois Knoll.
Design abstraction and processes in robotics: from code-driven to
model-driven engineering. In Proceedings of the Second interna-
tional conference on Simulation, modeling, and programming for
autonomous robots, SIMPAR’10. Springer-Verlag, 2010.

[6] J.P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholo-
nomic motion planning for mobile robots. Robot motion planning and
control, 1998.

[7] E. Szádeczky-Kardoss and B. Kiss. Extension of the rapidly exploring
random tree algorithm with key configurations for nonholonomic mo-
tion planning. In Mechatronics, 2006 IEEE International Conference
on. IEEE, 2006.

[8] J. Riehl. Implementing the myfem embedded domain-specific lan-
guage. In Proceedings of the Second International Workshop on
Domain-Specific Program Development, DSPD’08, 2008.

[9] John A. Miller, Jun Han, and Maria Hybinette. Using domain specific
language for modeling and simulation: Scalation as a case study. In
Winter Simulation Conference, 2010.

[10] M.H. Hohn. A little language for modularizing numerical pde solvers.
Software: Practice and Experience, 34(9), 2004.

[11] H. Liu and P. Hudak. An ode to arrows. Practical Aspects of
Declarative Languages, 2010.

[12] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-
ciples, techniques, and tools. Addison-Wesley Longman Publishing
Co., Inc., 1986.

[13] N. Wirth. Extended backus-naur form (ebnf), 1996. ISO/IEC, 14977,
1996.

[14] Fuhua Han, Takaaki Yamada, Keigo Watanabe, Kazuo Kiguchi, and
Kiyotaka Izumi. Construction of an omnidirectional mobile robot plat-
form based on active dual-wheel caster mechanisms and development
of a control simulator. J. Intell. Robotics Syst., 29, 2000.

[15] Takaaki Yamada, Keigo Watanabe, Kazuo Kiguchi, and Kiyotaka
Izumi. Dynamic model and control for a holonomic omnidirectional
mobile robot. Auton. Robots, 11, 2001.

