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ETH Zürich, Switzerland

marco.guarnieri@inf.ethz.ch

Eros Magri,
Dip. di Ing. dell’Informazione e

Metodi Matematici,
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Abstract—Code coverage is usually used as a measurement of
testing quality and as adequacy criterion. Unfortunately, code
coverage is very sensitive to modifications of the code structure,
and, therefore, we can achieve the same degree of coverage
with different testing effort by writing the same program in
syntactically different ways. For this reason, code coverage can
provide the tester with misleading information.

In order to understand how a testing criterion is affected
by code structure modifications, we have introduced a way to
measure the sensitivity of coverage to code changes by means
of code-to-code transformations. However the manual execution
of the robustness analysis is tedious, time consuming and error
prone. In order to solve these issues we present AURORA, a
tool that automates the robustness analysis process and leverages
the capabilities offered from several existing tools. AURORA
has an extendible architecture that concretely supports the
tester in the execution of the robustness analysis. Due to this
extendible architecture, each user can personalize the robustness
analysis to his/her needs. AURORA allows the user to add new
transformations by using TXL, which is a programming language
specifically designed to support source transformation tasks. It
performs the coverage evaluation by using existing code coverage
tools and is based on the use of the JUnit framework.

Keywords-Code Coverage; Testing Criteria; Code Transforma-
tions; Coverage Robustness

I. INTRODUCTION

The notion of code coverage and testing criteria dates back
to the early sixties [1], [2]. Although, as Dijkstra claimed
in 1972 [3], “program testing can be used to show the
presence of bugs, but never their absence”, coverage criteria
are used to measure the confidence in the absence of errors
in programs by testing them. The testing community has
introduced, compared, and studied a large number of testing
criteria, which have proved to be useful in finding faults in
programs. However, there still exists some skepticism around
the actual significance of coverage criteria. It is well known
that testing criteria are very sensitive to the structure and
to the syntax of the code, regardless its actual behavior.
Rajan et al. [4] show that MCDC, required by FAA for
software on commercial airplanes, and often considered a very
tough criterion to achieve, can be easily cheated by simple
folding/unfolding of conditions inside guards.

Despite their weaknesses, coverage criteria give an indicator
of the quality of the testing that can be easily computed by
running the code with the tests. Coverage is often used as
acceptance threshold: if a test suite achieves a given coverage,
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it is considered adequate, and the tested software accepted
as good. For this reason, reaching a given level of coverage
becomes a critical factor during the testing activity.

We can state that the coverage data are easily obtained
and are widely used as acceptance measure, but may have
a questionable significance.

There are two main scenarios in which it is important
knowing how the coverage offered by a test suite behaves
with respect to the changes in the code structure.
A. The code has been transformed in the past before being

tested and the coverage may depend on the transformations
applied. In this way, testing criteria can easily be cheated,
and hence an additional measure of the coverage fragility
helps in identifying well-tested classes from poorly tested
ones.

B. The code structure will change in the future without chang-
ing the input/output semantics of the program by applying
some refactoring rules, by some automatic transformations,
or by introducing particular patterns. This may influence
the coverage after the application of these transformations.
In this context, the tester would like to know if the level of
coverage provided by the test suite will be preserved, i.e.,
if the coverage is robust with respect to future changes.

As highlighted in [5], a viable way for handling the be-
haviour of the coverage with respect to code transformations
is to extend usual coverage criteria with an index that measures
the losses of coverage that are caused by code transformations.
We have proposed a new metric, called extended coverage, that
extends the usual coverage measurement with an information
on how much the coverage offered by the test suite is sensitive
to transformations. The extended coverage consists of a pair of
values (a, b) where a represents the usual coverage, whereas b
is a fragility index that measures the sensitivity of the coverage
to modifications in the code structure.

Extending existing coverage criteria instead of trying to
define new ones that would be less sensitive to code trans-
formations has the main advantage that the tester can reuse
existing frameworks and tools for measuring code coverage:
it is sufficient to transform the original code and apply the
usual techniques to see how the coverage changes.

However measuring the extended coverage is a tedious task,
especially when we have to consider a big program and an high
number of transformations, because for each transformation
we have to transform each file of the program and then we have
to re-run the entire test suite over the transformed program
in order to compute the loss of coverage. For this reason we



have developed the AURORA tool, which stands for AUtomatic
RObustness coveRage Analysis tool.

In this paper we present the AURORA1tool that provides
testers with the capability of computing the extended coverage
achieved by a certain test suite ts over a program p in an
automated way. The tool accepts code transformations defined
by means of the TXL language [6], and uses standard coverage
measurement libraries to compute the coverage achieved by ts
on p, and using the transformations it automatically computes
the fragility indexes.
Structure of the paper: Section II presents some examples
that motivates the need of a way to measure the influence
of code transformations on the coverage. In Section III,
we present some theoretical background about the extended
coverage metric, and we provide a simple introduction to the
TXL transformation language. Section IV presents some code
transformations and their formalization in TXL, whereas in
Section V we describe the architecture of AURORA. In Section
VI, a comparison is made with some related works, whereas
in Section VII we present some considerations about the use
of the extended coverage metric during the testing process.
Finally, Section VIII draws a few concluding remarks and
presents future work.

II. MOTIVATION

Several works have already highlighted the fact that code
coverage is very sensitive to the structure of the code, and thus
it can be misleading as test adequacy criterion [4], [5], [7].

We motivate the need of quantifying how much the achieved
coverage is sensitive to changes in the code by using four ex-
amples taken from [5]. These examples consider four different
coverage criteria, namely MCDC, branch coverage, condition
coverage and statement coverage. In each of these examples
let p1 be the code fragment on the left, and p2 be the one on
the right.

Example 1: Let in_1 and in_2 be two boolean variables.
p1 p2

boolean expr 1 = in 1 || in 2;
if (expr 1){

...
}

...
if (in 1 || in 2){

...
}

p1 and p2 are obviously semantically equivalent because they
behave in the same way for each possible value of in_1
and in_2. However, a test suite ts containing only two tests
(in 1=true, in 2=false) and (in 1=false, in 2=false) achieves
a full MCDC coverage of the if statement (with a simple
variable as a guard) in p1, whereas it does not achieve the full
MCDC coverage of the if statement with the inlined condition
in p2.

Example 2: Let x be an integer variable.
p1 p2

...
if (x>=2) x=x+1;
else x=x+2;

...
if (x==2) x=x+1;
else if(x>2) x=x+1;
else x=x+2;

1The AURORA Tool can be found at http://code.google.com/a/eclipselabs.
org/p/aurora/. The same website contains also a tutorial and an installation
guide.

Also in this case p1 and p2 are semantically equivalent.
However a test suite ts containing only two tests (x=0) and
(x=5) achieves 100% of branch coverage over p1, but only
75% of branch coverage on p2.

Example 3: Let a and b be two boolean variables.
p1 p2

if(a && b){
.... // body
}

if(a) {
if (b){

.... // body
}
}

A test suite ts containing two test cases (a = true, b = true)
and (a = false, b = true) achieves the full decision coverage
of p1, but it covers only the first decision of p2, despite the
fact that p1 and p2 have the same input/output behaviour.

Example 4: Let a be a boolean variable and i be an integer
variable.
p1 p2

if(a)
i = i+1;

else
i = i+2;

cout<<i;

if(a) {
i = i+1;
cout <<i;

} else {
i = i+2;
cout<<i;

}
Despite the fact that p1 and p2 are semantically equivalent, the
test suite containing only one test (a = true) achieves 60% of
statement coverage on p1 but only 50% of statement coverage
on p2.

The examples above show that also simple programs with
the same input/output behaviour may achieve very different
degrees of coverage with respect to the same test suite. This
means that achieving the same level of coverage may require
a different effort depending on the structure of the code itself
(independently from the fact that the programs offer the same
functionalities). However, it may be not advisable to force
programmers to write programs in a particular way only to
assure that a test suite achieves a particular degree of coverage.
This could potentially diminish other qualities of the code,
like readability or maintainability. A way of quantifying the
influence of code structure on the coverage achieved by a
certain test suite is thus needed to guide the testing process.

III. BACKGROUND

In Section III-A we present some background needed to
understand the concept of extended coverage and robustness
whereas Section III-B provides some basic knowledge about
the TXL language.

A. Theoretical Background

Due to space limitation here we give only a brief overview
of the main concepts behind the extended coverage approach.
A more detailed analysis of the problem can be found in [5].

We can formalize a coverage criterion as a function C :
TS×P → [0, 1] where TS is the set of all the test suites and
P is the set of all the programs. We consider only program
based testing criteria and thus a coverage criterion C takes as
input a test suite ts and a program p and returns a number



that indicates to which degree a particular set of elements in
the program p is covered by ts. For instance, the statement
coverage criterion C returns the percentage of statements of
the program p covered by the test suite ts.

A key concept of our approach is the definition of trans-
formation, which represents a possible change to the source
code of the program. A code-to-code transformation is a
function t : P → P that takes as input a program and returns
the transformed version of the program itself. We focus our
attention on Semantic Preserving Transformations (SPTs) [8]
which are transformations that change the structure of the code
but not the input/output behaviour of the programs to which
they are applied (i.e., a transformation t is a SPT iff for any
p ∈ P then p and t(p) have the same input/output behaviour).
In the following we refer only to SPTs and thus we call them
simply transformations. Given a sequence of transformations
T , we define the transformation tseqT as the application of the
transformations in T in sequence, i.e. tseqT = tn◦tn−1 . . .◦t1
where t1, . . . , tn ∈ T . Given a transformation t, we define
the transformation t̃ as the iterative application of t until the
program is no longer modified by t. Given a transformation t,
we can define the inverse transformation t−1 by exchanging
the input pattern and the output pattern. A more detailed
description of the transformations currently implemented in
AURORA can be found in Section IV.

Definition 1: Given a program p ∈ P , a test suite ts ∈ TS,
a set of transformations T and a coverage criterion C, we say
that ts fragilely covers p iff there is at least one transformation
t ∈ T such that C(t(p), ts) < C(p, ts).

The fact that a program is covered in a fragile way by
a certain test suite ts may reduce the confidence in the
measurement of the coverage because the obtained degree
of coverage may be due to the particular structure of the
code. On the one hand, a fragile coverage means that the
developer may have written the code in a particular way in
order to achieve an higher degree of coverage with a lower
testing effort. On the other hand, fragile coverage is not
robust with respect to future transformations. This may be a
problem because usually after the application of a SPT (e.g.,
a refactoring transformation) the developer does not feel the
need to change the test suite because no new functionalities
were added, and thus the original test suite may achieve a
lower coverage on the resulting code than expected. For this
reason it is important to automatically perform a robustness
analysis that can identify fragilely covered programs because
they may need more testing, regardless of the level of coverage
achieved so far.

In [5], we have defined the extended coverage as follows:
Definition 2: The Extended Coverage is a pair of values

(a, b) where a = C(p, ts) represents the usual coverage ob-
tained by applying ts to the program p, whereas b is a fragility
index such that b ∈ [0, 1], and it measures the sensitivity of
the coverage to modifications in the code structure.
If the fragility index b has a value of 0 this means that the
coverage is robust. The closer b is to 1, the more fragile the
coverage is.

Let p be a program, ts a test suite, and C a coverage
criterion. We define ∆(t) = C(p, ts) − C(t(p), ts) where
t is a transformation in a given set T . Let pos(x) be a
function defined as max(0, x) and let ρ(t) be a function that
defines the weight of each transformation t ∈ T , such that∑

t∈T ρ(t) = 1.
We have defined three different fragility functions that given

a distribution ∆(t) compute the fragility index in the following
ways:

• Averaged fragility: baf = pos
(∑

t∈T ∆(t)

|T |

)
• Weighted fragility: bwf =

∑
t∈T ρ(t) ∗ pos(∆(t))

• Worst case loss of coverage: bwc = pos(maxt∈T (∆(t)))

B. TXL in a Nutshell

In this section we briefly present the TXL language. For an
extensive treatment of the subject the reader may refer to [6],
[9]. TXL is a programming language that can be used to define
code-to-code transformations. The TXL toolkit takes as input
a textual file and a set of TXL files defining the grammar and
the transformations, it parses the textual file according to the
grammar, it produces a parse tree and then it applies query
rewriting rules over the parse tree. Finally, the textual output
is generated from the modified parse tree.

A TXL program consists usually of two different parts. We
shows these parts by using an example taken from [9].
• The program contains a grammar file which describes

the grammar of the input language. The grammar is
defined by means of the usual extended BNF notation.
The example below shows how the usual expression
grammar can be encoded in TXL (in the example [n]
represents the token of a numerical value).

define program
[e]

end define

define e
[t]
| [e] + [t]
| [e] − [t]

end define

define t
[p]
| [t] ∗ [p]
| [t] / [p]

end define

define p
[n]
| ( [e] )

end define
Note that TXL already comes with grammars for most of
the programming languages like Java, C, and C++.

• Each TXL program contains also a set of transformation
rules. Each transformation rule consists of a target type to
be transformed, a pattern (i.e., an example of the input
that we want to transform) and a replacement (i.e., an
example of how the transformed input will look). TXL
defines two kinds of transformation rules, namely rules
and functions. While functions are applied only once to
their scope, rules are applied repeatedly on their scope
until they reach a fixpoint.
The example below shows two transformations. rA is a
rule that replace two numerical values with the sum of
the values. If we apply rA to the expression 1 + 2 +
3 we obtain 6. rFA is a function that does exactly the
same transformation as rA, however due to the fact that



rFA is a function, if we apply rFA to 1 + 2 + 3 we
obtain 3 + 3.

rule rA
replace [e]
N1 [n] + N2 [n]

by
N1 [+ N2]

end rule

function rFA
replace ∗ [e]
N1 [n] + N2 [n]

by
N1 [+ N2]

end function
The fact that TXL allows the definition of transformation

by using an example-driven approach is the main reason
behind our choice of using TXL for representing source code
transformations.

IV. TRANSFORMATIONS IN TXL

In [5] we have defined several transformations that can in-
fluence the robustness of the coverage achieved by a test suite;
in this Section we introduce some of these transformations.

Externalized Complex Flag: The transformation tecf
has the following schema (complexBoolExpr is a Boolean
expression that contains at least one Boolean operator, and the
statements between the point A and B do not change the value
of x, and of the variables referenced in complexBoolExpr):

boolean x;
...
x = complexBoolExpr;//A
...
if(...x...){//B

...
}

tecf⇒

boolean x;
...
x = complexBoolExpr;
...
if(...complexBoolExpr...){

...
}

This transformation was already identified by by Rajan et al.
[4] and by Harman et al. [10]. Furthermore several refactoring
patterns [11] can be partially mapped on this transformation
or its inverse , i.e. Inline Temp Variable (in case the variable is
boolean and it is inlined in an if statement), Remove Control
Flag, Introduce Explaining Variable). This transformation was
applied in Example 1.

Boundary extraction: The transformation tbe splits an
if statement containing a condition that performs comparisons
over numerical values into several if statements (we assume
that a ≤ b). It has the following schema:

...t0...
if(a<=x && x<=b){

...t1...
} else {

...t2...
}

tbe⇒

...t0...
if(x==a) {

...t1...
} else if(x==b) {

...t1...
} else if(x>a && x<b) {

...t1...
} else {

...t2...
}

A simplified version of this transformation was applied in
Example 2.

Flattening Conditional Expression: The transformation
tfce splits all the expressions used as guards in conditional
statements until every if statement has only an atomic Boolean
expression as a guard. It can be modeled by the following two
transformation schema, the first one for conjunctions and the
second one for disjunctions. In both schema cond1 and cond2
represent boolean expressions.

if(cond1 && cond2){
...t1...
} else {

...t2...
}

tfce⇒

if(cond1){
if(cond2){

...t1...
} else {

...t2...
}

} else {
...t2...
}

if(cond1 || cond2){
...t1...
} else {

...t2...
}

tfce⇒

if(cond1){
...t1...

} else if(cond2){
...t1...

} else {
...t2...

}
This transformation is a generalization of some well known

transformations (for instance, the inverse of the Consolidate
Conditional Expression refactoring pattern [11] and some
transformations performed during compilation to assembly
code or bytecode [12] can be represented as special cases of
this transformation). It was used in Example 3.

Remove Consolidate Conditional Fragment: The
transformation trccf moves the first statement after an if state-
ment into the then block and the else block of the if statement
itself . It has the following schema:

if(cond){
...t1...
} else {

...t2...
}
statement;

trccf⇒

if(cond) {
...t1...
statement;
} else{

...t2...
statement;
}

trccf is the inverse transformation of the Consolidate Con-
ditional Fragment refactoring pattern [11], and it was used in
the Example 4.

The definition of the transformations as done above, by
means of an input pattern and an output pattern, can be directly
formalized by means of TXL programs. Currently AURORA is
restricted only to the Java language, and therefore we have
used the Java 1.5 TXL grammar2. Listing 1 shows how the tecf
transformation can be implemented in TXL, whereas Listing
2 shows the implementation of the tfce transformation for
disjunctive expressions.

V. TOOL ARCHITECTURE

The AURORA tool is an Eclipse plugin that allows de-
velopers to execute automatically the robustness analysis of
their code given a test suite. We have chosen to implement
it on the basis of the Eclipse framework for three main
reasons: (a) Eclipse is widely used by developers as IDE,
(b) Eclipse allow us to integrate AURORA in an environment
that already supports several aspects of the testing process
(e.g., unit testing, coverage measurement, test generation),
(c) a developer can add to AURORA new transformations, new
fragility indexes, and new coverage criteria using the Eclipse
Plugin mechanism and the AURORA extension points.

2The grammar can be downloaded at http://www.txl.ca/nresources.html.



rule main
replace $ [repeat declaration or statement]
A [repeat declaration or statement]

by
A [ecf decl] [ecf assign]

end rule

rule ecf assign
replace [repeat declaration or statement]
A [id] ’= B [assignment expression] ’;
’if ’( C [id] ’) IfBranch [statement]
ElseBranch [opt else clause]
Rest [repeat declaration or statement]

where
A [= C]

by
A ’= B;
if ’( B ’) IfBranch ElseBranch
Rest

end rule

rule ecf decl
replace [repeat declaration or statement]
’boolean A [id] ’= B [expression] ’;
’if ’( C [id] ’) IfBranch [statement]
ElseBranch [opt else clause]
Rest [repeat declaration or statement]

where
A [= C]

by
’boolean A ’= B;
if ’( B ’) IfBranch ElseBranch
Rest

end rule

Listing 1. tecf transformation

rule main
replace $ [statement]
A [if statement]

by
A [extractPar] [flat]

end rule

rule extractPar
replace [if statement]
’if ’( ’( A [expression] ’) ’)
IfBranch [statement]
ElseBranch [opt else clause]

by
’if ’( A ’)

IfBranch
ElseBranch

end rule

rule flat
replace $ [if statement]
’if ’( A [conditional and expression]

’|| B [conditional and expression]
C [repeat or conditional and expression] ’)

IfBranch [statement]
ElseBranch [opt else clause]

by
’if ’( A ’)

IfBranch
’else

’if ’( B C ’)
IfBranch

ElseBranch
end rule

Listing 2. tfce transformation

The robustness analysis process is shown in Algorithm 1.
The process takes as input a program p, a coverage criterion
C, a set of transformations T , a test suite ts and a fragility
function f and returns the value of the extended coverage E
(i.e., the pair of the usual coverage C(p, ts) and the value
of the fragility index). The process can be easily extended to
handle the robustness analysis over more than one coverage
criterion/fragility function (we simply iterate the execution
of the Algorithm 1 over the set of coverage criteria/fragility
functions).

Algorithm 1: Robustness Analysis process
Input : Program p, Criterion C, Transformations T , Test suite ts, Fragility

Function f
Output: Extended Coverage E
begin

n = |T |;
∆[n];
c = C(p, ts);
for t ∈ T do

p′ = t̃(p);
c′ = C(p′, ts);
∆[i] = c− c′;

return (c, f(∆));

The process is very simple, however executing it manually
would be tedious and error prone for several reasons:

• if the transformations are done manually they are time-
consuming and error prone (especially on large pro-
grams),

• if the transformations are done by means of tools like
TXL, the transformed files have to be imported each time
in the IDE because they need to be built/compiled again,

• code coverage tools usually require that the code under
test is instrumented, and thus the transformed code should
be instrumented each time after the transformation phase,

• tools like TXL and code coverage tools are not usually
integrated in the same environment and thus moving
source files from one environment to the other is time
consuming,

• the test suite ts has to be executed for each triple of
transformation, coverage criteria and fragility index,

• the results of the analysis are not immediately understand-
able because we only obtain a bunch of coverage results.
The results have to be aggregated and processed in order
to obtain the extended coverage.

We have created AURORA in order to automate the robust-



Fig. 1. Architecture of AURORA

ness analysis process and to solve the issues highlighted above.
The aim of AURORA is to provide an environment that testers
can easily use for executing the robustness analysis of their
projects with a couple of clicks. In our opinion only tools like
AURORA can lead to a concrete adoption of the robustness
analysis outside the research environment.

The architecture of AURORA is shown in Figure 1. Cur-
rently AURORA supports only the Java language and it makes
use of several existing tools:
• TXL is used to automate the transformation of the pro-

gram under test. Each transformation is thus formal-
ized as one or more TXL programs (some examples of
transformations were presented in Section IV). By using
TXL, we can concentrate only on the formalization of
the transformations, without caring about how they are
actually performed.

• We require that the test suite is provided as a set of JUnit3

tests. We then use JUnit to automate the execution of the
test suite.

• The Eclipse framework is used to automatically rebuild
the source code just after each transformation.

• CodeCover4 is used to automatically measure the cover-
age achieved by a certain test suite.

A key point of the AURORA architecture is its extendibility,
which is achieved by using the concept of extension point
provided by the Eclipse framework. We have defined three
kind of extension points. First of all, we have defined an
extension point AURORA.transformation that allows the tester
to add new transformations to the set of transformations used
by AURORA in the analysis. This is very important because
the fact that a coverage is fragile or robust strongly depends
on the set of transformations T one considers. With a small
set T any coverage is likely to be robust, but with a large T
only the best test suites will provide the required degree of
coverage and robustness. Each tester should personalize the
set of transformations used in the analysis with transformations
that will likely be applied on the program in the future or with
transformations that was likely applied on the program in the
past. AURORA currently implements the four transformations
presented in Section IV.

3JUnit - http://www.junit.org/
4CodeCover - http://codecover.org/

AURORA allows also the definition of new fragility indexes
by using the extension point AURORA.index. Currently AU-
RORA implements the three fragility functions presented in
Section III-A, namely Averaged fragility, Weighted fragility
and Worst case loss of coverage.

Another important extension point is AURORA.criterion that
allows the tester to add new coverage criteria to AURORA. We
implemented four coverage criteria, namely Statement Cover-
age, Condition Coverage, Decision Coverage and MCDC. The
coverage measurement is done by leveraging the capabilities
offered by the CodeCover tool. New coverage criteria may be
added by using tools different from CodeCover or by manually
writing components that measure the coverage.

Figure 2 shows the results of the robustness analysis of the
WBS Java program. WBS is a Java implementation of the
wheel brake system example found in ARP 4761 [13] and it
has already shown fragility problems in [5] (some results are
different from [5] because in this case we have considered
only three transformations).

VI. RELATED WORK

The concept of code coverage was introduced by by Miller
and Maloney in 1963 [1], although also Senko introduced
a similar concept [2]. Since then, various notions of code
coverage (i.e., coverage criteria) have been proposed as a
measure for test suite quality, including statement coverage,
branch coverage, method coverage, MCDC, and others [14].

Although these criteria cannot guarantee the correctness
of the program under test, they can be used as a measure
of the adequacy of the testing activity and as an indication
of how much of a program is tested by the current test
suite. Test suites that satisfy certain coverage criteria may be
required in order to accept commercial software. For instance,
the Modified Condition Decision Coverage (MCDC) [15], is
required for safety critical aviation software by the RCTA/DO-
178B standard.

The assumption behind the use of coverage criteria as a
adequacy measurement is that a test suite can reveal a fault
only if it executes the portion of code that contains the fault,
and thus an higher level of coverage (which indicates that a
bigger portion of the code is exercised by the test suite) should
correlate with a higher number of revealed faults, although
other factors may influence the actual outcome [16]–[19].

It is well known that coverage criteria can be very sensitive
to code structure both if they are used for measuring test
adequacy and if they are used for test generation. Regard-
ing the adequacy, there are several works arguing that code
coverage is not robust to code structure transformations. In
[7], Marick et al. show how very simple transformations (like
adding a new empty line) can confuse code coverage tools.
More severe issues are presented in [4]. In that paper, Rajan et
al. show that MCDC metric is highly sensitive to the structure
of the implementation and can therefore be misleading as a test
adequacy criterion. They present six programs in two versions
each: with and without expression folding (i.e., inlining). They
find that the same test suites performed very diversely on



Fig. 2. Robustness Analysis Results

the two versions. In [5] we have proposed a framework that
can be used to evaluate the sensitiveness of the coverage
to code structure changes. We have also shown that several
structural coverage criteria suffer from this problem. We have
experimented how fragility affects existing code and test
suites. Furthermore we have found that even industrial projects
suffer from this kind of problems.

Regarding test generation, Staats et al. [20] show that test
suites generated specifically to satisfy coverage criteria achieve
poor results in terms of effectiveness, whereas the use of
coverage criteria as a supplement to random testing provides
an improvement in the effectiveness of the generated test
suites.

So far, the main solution in the literature to overcome
coverage criteria weaknesses has been trying to introduce more
powerful and tough testing criteria [21].

Transformations and code coverage is studied by Weissleder
[22]. In this case the transformation is used to obtain in-
formation of the coverage over the original code from the
information about the coverage over the transformed code. The
goal is to find a transformation such that if a test suite achieves
the coverage C1 over the transformed code, than the same test
suite achieves the coverage C2 over the original code. In this
case C1 simulates the coverage C2.

The fact that transformations can disrupt coverage is also
tackled by Kirner [12], [23], he addresses the challenge
of ensuring that the structural code coverage achieved for
a program P is preserved when P is transformed. If the
transformation fulfill certain properties then we know that the
coverage achieved on the original program is preserved on the
transformed program.

VII. FINAL REMARKS ABOUT EXTENDED COVERAGE

Once the tester has measured the extended coverage
achieved by a test suite ts over a program p with respect
to a set of transformations T and a coverage criterion C, what
are the information he/she can infer from the resulting value
(a, b)? And, moreover, how should he/she react?

In this section, we are going to explain some intuitive
considerations about these two topics and the meaning of the
extended coverage metric. We do not claim that this section

provides a thorough and extensive treatment of the subject, nor
that these considerations are supported by empirical results.
Indeed, we plan to extend our work on extended coverage with
an accurate study of these considerations based on empirical
data.

We assume in this section that the client has fixed a coverage
threshold k, and has given a fixed set of transformations T . For
simplicity’s sake, we consider the worst case loss of coverage
fragility index.

If the obtained fragility b is equal to 0, this means that the
achieved coverage a is completely robust. This means that no
matter which transformation t ∈ T is applied to the program
p, the coverage achieved over the transformed program t(p) is
always greater than a. So if a ≥ k, then we are sure that our
test suite has met the coverage requirements requested by the
client, and, thus, we can safely stop the testing. On the other
hand, if a < k we know that we have to continue the testing
process, since the test suite ts does not meet the coverage
requirement on the program p.

Everything becomes more complex in case the fragility b
is more than 0, i.e., the coverage a is fragile. Regardless the
level of coverage a achieved by ts on the program p, this
means that there is at least a transformation t ∈ T such that
the coverage achieved by ts on t(p) is lower than a. This may
cause some problems since the client’s request is that all the
possible transformed programs have to satisfy the coverage
requirement. So it is easy to see that if a − b ≥ k, then we
are sure that every possible transformation t ∈ T generates a
transformed program that satisfies the coverage requirement,
and so we can safely stop the testing process. On the other
hand, if a− b < k, then there is at least a transformed version
of the program (or the program itself) that does not reach the
coverage threshold requested by the client, and thus we have to
continue the testing process either by increasing the coverage
or by decreasing coverage fragility.

In order to increase the coverage robustness the tester can
act in two ways:

1) He/she could extend the test suite with new test cases,
maybe generated from a transformed version of the
program. In order to help the tester in this activity,
AURORA reports the loss of coverage for every single



transformation.
2) He/she could change the structure of the code in order to

remove all the points that introduces fragility issues.
However, restructuring the code and removing fragility points
may be not straightforward nor possible every time (this fact
highly depends on the transformations in T ). Code changes
may decrease other quality factors like readability and main-
tainability. Moreover transforming the code would increase
the robustness at the expenses of the coverage, which would
diminish. To maintain the same level of coverage, the tester
must add new tests in any case.

If we consider other fragility indexes, it is more difficult
to intuitively give similar considerations, because the mathe-
matical structure of the indexes is more complex. However in
this situation, a realistic assumption is that the client may fix
a desired maximum level of fragility f . In this case, we can
stop the testing process safely when both the coverage and the
fragility requirement are met (i.e., when a ≥ k and b ≤ f ).

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented the AURORA tool, that
allows testers and developers to automatically quantify the
robustness of a test suite with respect to code structure
changes.

In this paper we have shown how existing tools, i.e.,
CodeCover and TXL, can be integrated in order to automate
the process needed to compute the extended coverage. We have
also shown how several semantic preserving transformations
can be effectively implemented by using TXL.

Although AURORA is still a prototype, it has proved to be
very effective in ease the robustness analysis of programs.

In the future we plan to extend the set of TXL transfor-
mations and we aims at extending the tool also to languages
different from Java. We also plan to use AURORA to study
the correlation between the fragility of a test suite and its fault
detection capability.
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APPENDIX

The plan for the live demonstration is the following:
1) Firstly we present some of the examples of Section II to

clarify the kind of problems addressed by AURORA.
2) Then we show a practical example that consists of a Java

program and a JUnit test suite. In this case we execute
the robustness analysis manually. We first instrument the
Java project with CodeCover, then we execute the test
suite to obtain the initial coverage. We transform the code
by directly invoking the TXL process. Then we import
again the transformed code into Eclipse, we show the
differences w.r.t. original one, we execute again the test
suite and we compute the coverage over the transformed
version of the program. The goal of this part of the
demonstration is to show that, although executing the
robustness analysis manually is feasible, there is a need
of an automated way of executing the robustness analysis
process because manual approaches are time-consuming
and error prone.

3) Then we show how AURORA can execute the robustness
analysis on the same example in an automated way and



we describe how AURORA presents the results of the
analysis.

4) Finally we show how AURORA behaves with some real
examples that require to apply several transformations on
several Java classes. These examples, like WBS (the is a
Java implementation of the wheel brake system example
found in ARP 4761 [13]), TCAS (the Java implementa-
tion of a Traffic Collision Avoidance System) and ASW
(a Java implementation of an altitude switch), have shown
to suffer from fragility problems [5]. The manual analysis
of these examples is very time-consuming, whereas the
execution of AURORA can be done in an automated way
in a reasonable amount of time.


