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Abstract—Securing database-backed applications requires
tracking information across the application program and the
database together, since securing each component in isolation may
still result in an overall insecure system. Current research extends
language-based techniques with models capturing the database’s
behavior. This research, however, relies on simplistic database
models, which ignore security-relevant features that may leak
sensitive information.

We propose a novel security monitor for database-backed
applications. Our monitor tracks fine-grained dependencies
between variables and database tuples by leveraging database
theory concepts like disclosure lattices and query determinacy. It
also accounts for a realistic database model that supports security-
critical constructs like triggers and dynamic policies. The monitor
automatically synthesizes program-level code that replicates the
behavior of database features like triggers, thereby tracking
information flows inside the database. We also introduce symbolic
tuples, an efficient approximation of dependency-tracking over
disclosure lattices. We implement our monitor for SCALA
programs and demonstrate its effectiveness on four case studies.

I. INTRODUCTION

Database-backed applications are programs that interact with
databases to store and retrieve information. These applications
are commonly used in settings like e-commerce, e-health,
and social networks, and often handle sensitive data where
security is a concern.

Securing database-backed applications is challenging: the
security of the program and the database in isolation is insuf-
ficient to ensure the overall system’s security. For instance,
program-level information, such as the sensitive context of a
function call that triggers a query, is lost at the time of database-
level enforcement. Conversely, database-level information, such
as fine-grained security labels, is lost at the time of program-
level enforcement, when information from the database is
manipulated by the application.

Security models for database-backed applications must there-
fore account for both the program’s and the database’s seman-
tics. Following this approach, existing information-flow control
(IFC) solutions [7], [14], [15], [17], [19], [31], [44], [49]
extend programs with database models and apply standard IFC
techniques, such as security type systems [17], [43], symbolic
execution [14], or faceted values [49], to track information
flows across the program and the database, with the goal of
providing end-to-end security.

These approaches, however, are inadequate to secure modern
database-backed applications. They only consider simplistic
database models and often ignore features like dynamic policies
and triggers. These features are available in most modern

database systems and can be exploited to violate the database’s
confidentiality [25]. Ignoring them, therefore, means ignoring
possible information leaks.

Another challenge in tracking information flows across the
program-database boundary is analyzing queries. Some ap-
proaches [7], [43] perform simple syntactic checks on table and
column identifiers to derive the queries’ security levels. As mod-
ern query languages like SQL are very expressive, this may re-
sult in coarse approximations that make the analyses imprecise.
Additionally, these approaches do not support common policy
idioms used in database security, such as row-level policies.

In summary, effectively securing database-backed
applications requires (1) realistic database models that capture
the security-critical features offered by modern databases,
and (2) specialized techniques, rooted in database theory, to
analyze queries.
Contributions. We develop a novel IFC solution that (1) builds
on top of a realistic database model accounting for a large
class of security-relevant features, and (2) tracks fine-grained
dependencies between variables and tuples by using concepts
from database theory.

First, we develop a foundation for IFC for database-backed
applications using WHILESQL, a simple imperative language
extended with querying capabilities. WHILESQL builds on a
state-of-the-art database operational semantics developed by
Guarnieri et al. [25] and supports database features like triggers,
views, and dynamic policies. We propose a novel security
condition for WHILESQL programs that accounts for dynamic
policy changes.

Second, we develop a novel IFC monitor for WHILESQL
programs and prove it sound with respect to our security con-
dition. Our monitor tracks fine-grained dependencies between
variables and queries across program-level computations and
blocks outputs that could potentially leak sensitive information.
For checking policy violations, the monitor relies on disclosure
lattices [8] and query determinacy [35]. The monitor supports
row-level policies, a common class of database policies used
in many fine-grained access control models [12], [24], [37],
[48]. Additionally, it supports security-critical database features,
such as triggers and policy changes, that are not supported
by existing mechanisms [17], [19], [31], [43], [44], [49]. To
address the mismatch between program code and database
features like triggers and integrity constraints, the monitor
automatically synthesizes WHILESQL code mimicking these
features’ behavior, thereby enabling IFC techniques to track
information flows inside the database.



Third, we implement our approach in DAISY (DAtabase and
Information-flow SecuritY), a security monitor for database-
backed SCALA programs. To overcome undecidability issues
when reasoning with disclosure lattices, DAISY relies on sym-
bolic tuples, a novel, efficient approximation of dependency-
tracking over disclosure lattices. We demonstrate our approach’s
precision and feasibility in four case studies implementing (i)
a social network, (ii) an assignment grading system, (iii) a
calendar application, and (iv) a conference-management system.
The case studies confirm that DAISY successfully prevents leaks
of sensitive information in the presence of realistic database
constructs without being overly restrictive. Our experiments
also show that symbolic tuples can be used to efficiently track
fine-grained dependencies. Concretely, DAISY introduces an
overhead of only 5%–10% in our case studies.

II. OVERVIEW

We now present our approach via an example. First, we
introduce the system model and the setting of our example.
Next, we motivate the need for realistic database models for
IFC. Finally, we illustrate how our monitor DAISY prevents
leaks of sensitive information.
System model. The system consists of users, whose
interaction with the database is mediated by a program like
a web application. Each user is uniquely associated with a
user account that is used to authenticate the user and retrieve
information from the database. We assume that users execute
programs using their own accounts. An attacker is a user
who can interact with the database only through programs. He
cannot learn the results of the queries issued by the program
unless they are part of the program’s output.

A security policy is defined at the database level using
access control policies, which specify what data each user is
allowed to access. Differently from access control, however,
we interpret the read permissions over tables and views as
information-flow policies, and we enforce them in an end-to-
end fashion across the program and the database. We assume
that the database does not enforce read permissions over tables
and views, but it still correctly enforces write permissions, e.g.,
a user can insert a tuple into a table T only if the policy says
so. This allows us to study what it means for a system to be
end-to-end secure from the information-flow perspective.
Setting. We consider a social network allowing users to review
books, publish their reviews, and share them with friends. The
database consists of six tables: book, user, friends, review,
likes, and stats. The table book contains information about
books, the table user contains the users’ information, the table
friends encodes the friendship relation among users, the table
review contains the users’ reviews, the table likes stores
information about reviews liked by users, and the table stats

contains statistics about the users and reviews. Furthermore,
we assume that for each user u there is a database view
reviewu containing user u’s reviews, i.e., the results of the
query SELECT ∗ FROM review WHERE userId = u.

The security policy is as follows: all users can read the con-
tent of the tables book, user, friends, likes, and stats but

they can only read their friends’ reviews. The first requirement
can be implemented by granting SELECT permissions over the
respective tables. The second requirement is formalized using
row-level policies, which disclose only a subset of the tuples in
a table. Row-level policies are a widely used policy idiom in
database security, and they are employed in many fine-grained
database access control models [12], [24], [37], [48]. In our set-
ting, we model the second requirement by granting SELECT per-
missions over the view reviewu1

to u2 whenever 〈u1, u2〉 is in
the table friends. We remark that we interpret the above pol-
icy as an information-flow policy, not as an access control one.

Motivating example. We consider three users Alice , Bob, and
Carl . We assume that Alice is a friend of Bob and Carl , but
Bob and Carl are not friends with each other. That is, Alice
can read Bob’s and Carl ’s reviews, but Bob cannot read Carl ’s
reviews and vice versa.

Consider the simple program below. First, Carl reviews
the novel “War and Peace” by Leo Tolstoy. Next, Alice reads
Carl’s review, which she appreciates, and creates an entry in
the table likes associated with it. Finally, Bob retrieves from
stats the statistics of all his friends.
//Executed by Carl
x← INSERT INTO review(id, user, book, score)

VALUES (1,Carl ,"War and Peace", 10)
//Executed by Alice
y ← SELECT revId, text, score FROM review WHERE

book = "War and Peace" AND userID = Carl
out(Alice, y)
z ← INSERT INTO likes VALUES (y.revId ,

"War and Peace",Carl ,Alice)
//Executed by Bob
F ← SELECT u2 FROM friends WHERE u1 = Bob
S ← SELECT genre FROM stats WHERE userId = Bob
for (f : F ; g : S)
v ← SELECT v FROM stats WHERE userId = f

AND genre = g
out(Bob, 〈f, g, v〉)

The program is secure since all information flows comply with
the policy. Specifically, Alice observes one of Carl ’s reviews.
This is allowed by the policy since they are friends. Moreover,
Bob’s computation depends only on the public tables friends
and stats.

Why are realistic database models essential? The above
example relies on only basic database features like SELECT

and INSERT commands. Modern databases, however, support
many security-critical features, such as dynamic policies and
triggers, that may introduce additional information flows. As a
result, a seemingly secure program may actually be insecure
when features like triggers are accounted for.

To illustrate this, we extend our social network with a
trigger, that is, SQL code that is executed automatically by the
database in response to queries. Concretely, our social network
collects several statistics about users’ reviews in the table
stats. Among other things, the social network collects, for
each user u and genre g, the score of the last review of books



of genre g liked by u. Instead of computing this data on the
fly, the statistics are stored in the database and updated using
triggers. The following trigger, which is executed under the
database administrator’s privileges, updates the score whenever
a new tuple is inserted into the table likes.

CREATE TRIGGER tr ON likes AFTER INSERT DO

UPDATE stats SET lastScore = (SELECT score

FROM reviews WHERE id = NEW.revid)
WHERE user = NEW.user AND genre IN (SELECT
genreFROM book WHERE book = NEW.book)

Specifically, whenever someone inserts a tuple 〈revId , book ,
revAuthor , user〉 into likes, the trigger updates the score
associated with the user user and book ’s genre with the score
associated with the review with identifier revId . In the above
trigger, we write NEW.x to refer to the attribute x of the tuple
just inserted in likes.

The program is no longer secure when the trigger tr is
present in the database. Indeed, now the information observed
by Bob depends on Carl ’s review. This flow of information,
however, is not allowed by our security policy since Bob
can only read his friends’ reviews. In more detail, when
Alice inserts the tuple into the table likes, the trigger tr is
executed and the attribute lastScore is updated using the
score in Carl ’s review. Moreover, since Carl is one of Alice’s
friends, this information influences Bob’s computation, thereby
violating the security policy.

Stopping leaks with DAISY. Ignoring advanced database
features may lead to a false sense of security. Indeed, a
seemingly secure program may still leak sensitive information
due to additional information flows introduced by triggers
and other database features. As a result, reasoning about the
security of database-backed applications requires accounting
for realistic database models and for common policy idioms
used in database security. Unfortunately, existing solutions [7],
[14], [15], [17], [19], [31], [43], [44], [49] either ignore relevant
security-critical database features (like triggers and dynamic
policies) or adopt imprecise analyses when handling queries (cf.
§VIII). This severely limits their ability to secure applications
and to enforce natural policy idioms like row-level policies.
To address this, we propose DAISY, a security monitor that
leverages disclosure lattices and query determinacy to track
fine-grained tuple-level dependencies. DAISY monitors the
program’s execution, tracks dependencies between variables and
tuples, and stops the program whenever sensitive information
may be leaked.

How DAISY works DAISY tracks, at runtime, dependencies
between queries and program variables and stops the program
whenever it detects a possible leak of sensitive information. For
instance, whenever information is retrieved from the database,
DAISY determines which tuples may have influenced the
query’s result and it tracks how the retrieved information flows
through the program. To concisely represent sets of tuples,
we develop symbolic tuples, an efficient approximation of
disclosure lattices (cf. §VI), which represent sets of concrete
tuples using logical formulae.

Consider the program from our example. When Alice re-
trieves the review, DAISY records that the content of the variable
y depends on Carl ’s review. More precisely, DAISY labels y
with the symbolic tuple 〈review, userId = Carl ∧ book =
"War and Peace"〉, which denotes that y’s content depends
on the values of all tuples in the table review satisfying the
constraint userId = Carl ∧ book = "War and Peace".
When Alice inserts a tuple into the table likes, DAISY tracks
the information flow caused by the trigger. DAISY determines
that the UPDATE command executed by the trigger inserts
sensitive information, i.e., the score of Carl ’s review, into
the public table stats. Concretely, the tool compares the
label associated with the input values, i.e., the tuple 〈y.revId ,
"War and Pace",Carl ,Alice〉, with the label associated
with the table stats .

Among others, 〈y.revId ,"War and Pace",Carl ,
Alice〉 is labelled with the symbolic tuple 〈review,
userId = Carl ∧ book = "War and Peace"〉 Using
query determinacy, DAISY checks if the symbolic tuple
〈review, userId = Carl ∧ book = "War and Peace"〉
can be derived from those associated with the stats table.
Since the stats table contains only public information, there
is no symbolic tuple among stats’s labels that discloses the
information represented by 〈y.revId ,"War and Pace",
Carl ,Alice〉’s label 〈review, userId = Carl ∧ book =
"War and Peace"〉. Hence, DAISY stops the program,
thereby preventing the leak of sensitive information.
Organization. We formalize WHILESQL in §III and our
security condition in §IV. We present our monitor in §V
and symbolic tuples in §VI. We present DAISY and our case
studies in §VII, we discuss related work in §VIII, and we draw
conclusions in §IX. A technical report with complete proofs of
all results is available at [23], and DAISY is available at [22].

III. WHILESQL

Here we present WHILESQL, a language supporting
querying constructs and a realistic database model.

A. Syntax and notation

Syntax. WHILESQL is an imperative language with querying
capabilities, whose syntax is given in Figure 1. Its impera-
tive fragment consists of assignments x := e, conditionals
if e then c1 else c2, loops while e do c, and output statements
out(u, e), which print the value of an expression e to a user
u. Expressions e are values n ∈ Val , variables x ∈ Var ,
or application of unary �e and binary operations e1 ⊗ e2 to
expressions. The set U of all users is UID ∪ {public}, where
UID is a set of user identifiers and public is a designated
identifier denoting all users.

Database queries are modeled as statements of the form
x← q that execute an SQL command q, which may contain
program variables, and assign the result to a variable x. Observe
that each SQL command either returns the query’s result or an
error message. Error messages indicate whether queries violate
security constraints or integrity constraints, such as a DELETE

command that is not allowed by the current security policy or



Basic Types
(Table Ids) T ∈T
(View Ids) V ∈V
(Relation Ids) R ∈T ∪ V
(Trigger Ids) tr ∈TR
(Variables) x ∈Var
(Values) n ∈Val
(User identifiers)u ∈U
(Formulae) ϕ ∈RC

Syntax
(Privileges) p := SELECT ON R | INSERT ON T | DELETE ON T

| CREATE VIEW | CREATE TRIGGER ON T
(Actions) a := INSERT e1, . . . , en INTO T | DELETE e1, . . . , en FROM T

| GRANT p TO u | REVOKE p FROM u
| GRANT p TO u WITH GRANT OPTION

(SQL commands) q := a | SELECT ϕ | CREATE VIEW V : SELECT ϕ
| CREATE TRIGGER tr ON T AFTER (INS | DEL) IF ϕ DO a

(Expressions) e :=n | x | �e1 | e1 ⊗ e2

(Statements) c := ε | x← q | x := e | out(u, e) | if e then c1 else c2
| while e do c | c1 ; c2

Fig. 1: WHILESQL’s syntax

an INSERT command that violates a primary key constraint.
WHILESQL supports SQL’s core features, such as SELECT,
INSERT, DELETE, GRANT, and REVOKE commands, as well as
advanced features like triggers and views.

Database features. WHILESQL relies on the state-of-the-art
database semantics from Guarnieri et al. [25], which supports
security-critical features like dynamic policies and triggers.
Hence, following [25], we make various simplifications to our
query language.

WHILESQL supports retrieving information from the data-
base using SELECT commands. Rather than using SQL’s data
query language, we rely on the relational calculus (i.e., function-
free first-order logic), which has a simple and well-defined se-
mantics [1]. Following [25], we only consider boolean queries,
i.e., queries whose results are either true or false. We denote
by RC the set of all boolean relational calculus queries.

WHILESQL allows changes to the database’s content us-
ing INSERT and DELETE commands. Specifically, we sup-
port INSERT and DELETE commands that explicitly identify
the tuple to be inserted or deleted, i.e., commands of the
form INSERT INTO table(x1, . . . , xn) VALUES (v1, . . . , vn)
and DELETE FROM table WHERE x1 = v1 ∧ . . . ∧ xn = vn,
where x1, . . . , xn are table’s attributes and v1, . . . , vn are the
tuple’s values. More complex commands can be simulated by
combining SELECT, INSERT, and DELETE commands.

WHILESQL also supports the administration of dynamically
changing security policies. We support GRANT commands to
add permissions to a security policy. We also support delegation
through GRANT commands with GRANT OPTION. Moreover,
privileges can be revoked using REVOKE commands. We only
consider REVOKE commands with the CASCADE OPTION, i.e.,
when a user revokes a privilege, he also revokes all the
privileges that depend on it [40], [47].

Our model also supports triggers, which are procedures
automatically executed by the database system in response
to user commands. In particular, we support AFTER triggers
on INSERT and DELETE events, i.e., triggers that are executed
in response to INSERT and DELETE commands. In our model,
triggers are executed under the privileges of the trigger’s owner.
Moreover, the triggers’ WHEN conditions (which specify whether
a trigger is enabled or not) are arbitrary boolean queries and

their actions are INSERT or DELETE commands. Note that
database systems usually impose restrictions on the WHEN clause,
such as it must not contain sub-queries. However, most systems
can express arbitrary conditions on triggers by combining
control flow statements with SELECT commands inside the
trigger’s body. Thus, we support the class of triggers whose
body is of the form BEGIN IF expr THEN act END, where
expr is a boolean query and act is an INSERT or DELETE

command. Following [25], we only consider triggers that do
not recursively activate other triggers.

We also support database views, i.e., virtual tables defined
through SELECT queries, executed under the privileges of the
view’s owner. Additionally, we support CREATE commands
for creating new triggers and views. Finally, we support two
kinds of integrity constraints: functional dependencies and
inclusion dependencies [1]. They model the most widely used
SQL integrity constraints, i.e., the UNIQUE, PRIMARY KEY, and
FOREIGN KEY constraints.

B. Local semantics

We define here the semantics of WHILESQL programs
executed in isolation by a user u. It is formalized as a ternary
relation 〈c,m, s〉 o−→u 〈c′,m′, s′〉 mapping a local configuration
〈c,m, s〉, where c is the program under execution, m is the
memory, and s is the database state, to a configuration 〈c′,m′,
s′〉 while producing an observation o.

A WHILESQL program is defined with respect to a
database configuration 〈D,Γ〉, where D is a database schema,
i.e., a set of table identifiers with the corresponding arities,
and Γ is a set of integrity constraints. Here, we fix a database
configuration M = 〈D,Γ〉.
Database states. Following [25], we now introduce all the
components necessary to model a database state.

We define a security policy to be a finite set of GRANT

statements. Given a policy sec and a user u, auth(sec, u)
denotes the set of all tables and views that u is authorized to
read according to sec. A system state is a tuple 〈db, U, sec, T,
V 〉, where db is a database state, U ⊂ UID is a finite set of
users, sec is a security policy, T is a finite set of triggers, and
V is a finite set of views. We lift auth from policies to system
states, i.e., auth(〈db, U, sec, T, V 〉, u) = auth(sec, u).



A context ctx describes the database’s history, the scheduled
triggers that must be executed, and how to modify the
database’s state in case a roll-back occurs. We refer the reader
to [25] for a formal definition of contexts. A runtime state is
a tuple 〈s, ctx 〉, where s is a system state and ctx is a context.
The set of all runtime states is denoted by ΩM and ε denotes
the empty context. In the following, we use s to refer to both
system and runtime states when this is clear from the context,
and we use 〈s, ctx 〉 otherwise.

Local configurations. A local configuration 〈c,m, 〈s, ctx 〉〉
consists of a command c ∈ Com , a memory m ∈ Mem , and a
runtime state 〈s, ctx 〉 ∈ ΩM , where memories m ∈ Mem are
functions mapping variables to values, i.e., Mem = Var →
Val . A configuration is initial iff ctx = ε.

Observations. In WHILESQL, there are two ways of producing
observations. First, out(u, e) statements can be used to output
information to users. Second, successfully executed GRANT,
REVOKE, and CREATE commands produce public observations
notifying all users of the configuration’s changes. Formally,
an observation is a tuple 〈u, o〉, where u ∈ U is the target
user and o is a value in Val or a GRANT, REVOKE, or CREATE
command. We denote by Obs the set of all observations.

In our model, we represent traces of observations using
sequences, for which we use a standard notation. For a set S,
S∗ is the set of all finite sequences over S. Given a sequence
s ∈ S∗, we denote by |s| its length, by sj , where j ∈ N, its
prefix of length j, and by s|j its j-th element (if it exists). We
also denote by ε the empty sequence, by s1·s2 the concatenation
of s1 and s2, and by s1 � s2 that s1 is a prefix of s2.

Evaluation relation. Given a user u ∈ UID , the relation →u

⊆ (Com×Mem×ΩM )×Obs×(Com×Mem×ΩM ) formal-
izes the local operational semantics of programs executed by u.
A run r is an alternating sequence of configurations and obser-
vations that starts with an initial configuration and respects the
rules defining→u. Given a run r, we denote by ri, where i ∈ N,
the run obtained by truncating r at the i-th state. A trace is an
element of Obs∗. The trace τ of a run r, denoted by trace(r),
is obtained by concatenating all observations in the run.

We rely on [25] for the semantics of SQL statements. Our
operational semantics uses the function JqK(〈s, ctx 〉, u) (defined
in [23]) to connect WHILESQL’s semantics with the database’s
semantics. The function JqK(〈s, ctx 〉, u) takes as input an SQL
command q, a runtime state 〈s, ctx 〉 ∈ ΩM , and the user u ∈
UID executing the command, and it returns a tuple 〈〈s′, ctx ′〉,
r, em〉, where 〈s′, ctx ′〉 ∈ ΩM is the new runtime state, r is
q’s result, and em is an error message. We also write JeK(m) to
denote the evaluation of an expression e in memory m. It is al-
ways clear from context if J·K(·) refers to queries or expressions.

Figure 2 depicts the rules specifying a query’s execution. The
rule E-QUERYOK handles the successful execution of queries.
It first replaces the free variables in the query with their values.
Afterwards, it executes the query (using JqK(〈s, ctx 〉, u)) and it
stores the query’s result in the memory. The rule relies on the
function obs(q), which takes as input a query q, to conditionally
produce a public observation 〈public, q〉 in case the command

E-QUERYOK
{v1, . . . , vn} = vars(q)

Jq′K(〈s, ctx〉, u) = 〈〈s′, ctx ′〉, r, ε〉
q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

〈x← q,m, 〈s, ctx〉〉 obs(q′)−−−−−→u 〈ε,m[x 7→ r], 〈s′, ctx ′〉〉

E-QUERYEX
{v1, . . . , vn} = vars(q)

Jq′K(〈s, ctx〉, u) = 〈〈s′, ctx ′〉, r, em〉 em 6= ε
q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

〈x← q,m, 〈s, ctx〉〉 −→u 〈ε,m[x 7→ em], 〈s′, ctx ′〉〉

Fig. 2: Rules handling the query’s execution

q modifies the database configuration. Formally, obs(q) =
〈public, q〉 if q is a GRANT, REVOKE, or CREATE command,
and ε otherwise. Hence, the rule guarantees that configuration
changes are visible to all users. The rule E-QUERYEX handles
queries that fail, e.g., due to an integrity constraint’s violation.
Instead of storing the query result, the rule stores the error
message in the memory. The rules for the other WHILESQL
statements are standard and the full details are given in [23].

C. Global semantics

We now introduce a semantics modeling multiple WHI-
LESQL programs executed in parallel. We formalize it as a
ternary relation 〈C,M, s,S〉 o−→ 〈C ′,M ′, s′,S ′〉 mapping a
global configuration 〈C,M, s,S〉, where C is the sequence of
programs under execution, M is the sequence of memories, s is
the state of the shared database, and S is the scheduler’s state,
to a global configuration 〈C ′,M ′, s′,S ′〉, while producing the
observation o.

Global configurations. We denote the set of commands to-
gether with the executing user by ComUID = UID×Com and
the set of pairs of users and memories as MemUID = UID ×
Mem . To model a system state where multiple WHILESQL
programs run in parallel and share a common database, we
introduce global configurations. A global configuration is a
tuple 〈C,M, 〈s, ctx 〉,S〉 ∈ GlConf , where C ∈ Com∗UID is
a sequence of WHILESQL programs paired with the execut-
ing users, M ∈ Mem∗UID is a sequence of memories, 〈s,
ctx 〉 ∈ ΩM is the runtime state of the shared database, and S
is a scheduler formalizing the interleaving of the programs in
C. We consider only configurations 〈C,M, 〈s, ctx 〉,S〉 such
that |C| = |M | and for all 1 ≤ i ≤ |C|, C|i = 〈u, c〉 and
M |i = 〈u,m〉. Furthermore, a global state is a pair 〈M, s〉,
where M ∈ Mem∗UID and s is a system state.

Evaluation relation. Our global semantics is standard and
it executes, at each computation step, one step of the local
semantics for the program selected by the scheduler. We for-
malize the global semantics in [23]. For simplicity, we assume
that each user is associated with at most one program and
that different programs use disjoint sets of variable identifiers.
Moreover, we assume that all expressions are well-typed, and
all SQL commands refer to tables in the database schema or
previously created views.



IV. SECURITY MODEL

We introduce our security model in terms of the knowledge
of a user that observes outputs and public events from a program
execution. To ease the presentation, we assume that only the
database’s content is sensitive, while the initial memory’s
content is known by all users. This is without loss of generality,
since sensitive information can be loaded from the database at
the start of the computation. In our technical report [23], we
consider the more general case where the memory content can
be sensitive.

A. Preliminaries

Database equivalence. Two database states db and db′ are
equivalent with respect to a set S of tables and views, written
db ≈S db′, iff the contents of all tables and views in S are
the same in db and db′. For the equivalence of system states,
we employ data-indistinguishability from [25]. Informally, two
system states s and s′ are equivalent for a user u iff the users,
policies, triggers, and views in s and s′ are the same and the
content of the tables and views that u is authorized to read
is the same in s and s′. Formally, two system states s = 〈db,
U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 are u-equivalent,
written s ≈u s′, iff (1) U = U ′, (2) sec = sec′, (3) T = T ′,
(4) V = V ′, and (5) db ≈auth(sec,u) db

′. Given a system state
s and a user u, we denote by [s]≈u the set of all system states
that are u-equivalent to s.

Trace equivalence. To formalize equivalence between traces,
we first define the projection of a trace τ for a user u, written
τ�u. The projection τ�u is the sequence of all observations in
τ that u can observe, i.e., those observations where the user is
either u or public.

Two traces τ1 and τ2 are u-equivalent, written τ1 ∼u τ2,
iff one of the u-projections is the prefix of the other one, i.e.,
τ1�u � τ2�u or τ2�u � τ1�u. We remark that our definition
of trace equivalence follows state-of-the-art definitions for
dynamic policies, which do not differentiate between divergence
and termination [3], [46]. This is in contrast with other works
defining trace equivalence as requiring that either both traces are
equal or one is a divergence terminated prefix of the other [4],
[26].

B. Knowledge

Following [3], [46], we characterize what a user can infer
from an execution in terms of his knowledge, i.e., the set of
system states consistent with his observations.

Definition 1. The knowledge Ku(〈M0, s0〉, C,S, τ) of a user
u for a global state 〈M0, s0〉, a sequence of programs C, a
scheduler S , and a trace τ is defined as {s | s ≈u s0 ∧ ∀ctx ′,
τ ′, C ′,M ′, s′,S ′. (〈C,M0, 〈s, ε〉,S〉

τ ′−→∗ 〈C ′,M ′, 〈s′, ctx ′〉,
S ′〉 ⇒ τ ∼u τ ′)}.

A user u’s knowledge is the set of initial system states that u
considers possible after having observed τ�u. Thus, a smaller
set indicates a more precise knowledge.

Def. 1 is progress-insensitive as it ignores information leaks
due to the progress of computation, i.e., information that can
be inferred solely by observing how many outputs the program
produces. We achieve this by requiring that any execution
starting from a u-equivalent global state only produces traces
τ ′ that are u-equivalent to the original trace τ . There are
different flavors of progress-insensitivity in the literature. Some
definitions consider program termination or divergence to be
an observable event [4], [26], while other definitions, in line
with ours, do not [3], [46]. They therefore ignore pure progress
leaks, i.e., progress leaks not related to divergence/termination.
All these definitions are, in any case, subject to brute-forcing
leaks with known information-theoretic bounds [4].

C. Security condition

Our security condition ensures that changes in a user’s knowl-
edge comply with the current security policy. The condition is
inspired by existing IFC conditions for dynamic policies [3],
[11].

We interpret security policies with respect to initial system
states. The allowed knowledge Au,sec determines the set of
initial system states that a user u considers possible for a given
policy sec. Given a system state s0 = 〈db0, U0, sec0, T0, V0〉,
a security policy sec, and a user u, we define the set Au,sec(s0)
as {s | s ≈sec,u s0}, where 〈db′, U ′, sec′, T ′, V ′〉 ≈sec,u 〈db′′,
U ′′, sec′′, T ′′, V ′′〉 iff db′ ≈auth(sec,u) db

′′. We call Au,sec(s0)
allowed knowledge since it represents the knowledge of the
initial system state that the user u is permitted to learn given
the policy sec. In contrast to [s0]≈u

, Au,sec(s0) contains the
system states that agree with s0 with respect to the policy sec
instead of the policy in s0.

We now introduce our security condition.

Definition 2. A sequence of programs C ∈ Com∗UID is secure
with respect to a user u for a scheduler S and a system state s0

iff whenever r = 〈C,M0, 〈s0, ε〉,S〉
τ−→
n
〈C ′,M ′, 〈s′, ctx ′〉,

S ′〉, then for all 1 ≤ i ≤ n, Ku(〈M0, s0〉, C,S, trace(ri−1))∩
Au,sec(s0) ⊆ Ku(〈M0, s0〉, C,S, trace(ri)), where the data-
base state in r’s (i− 1)-th configuration is 〈db, U, sec, T, V 〉.

Our condition ensures that a user’s knowledge after
observing trace(ri) is no more precise than his previous
knowledge combined with the allowed knowledge from r’s
(i− 1)-th configuration, i.e., the knowledge increase is allowed
by the current policy.

V. ENFORCEMENT

We now present a monitor that provably secures WHILESQL
programs. To achieve end-to-end security across the database
and applications, our monitor tracks dependencies at the data-
base level (between tuples and queries) and at the program level
(between variables). It ensures that the information released by
output statements and public events complies with the current
security policy.

The monitor instruments WHILESQL programs to track
dependencies between variables, and it blocks the execution of
statements that may leak sensitive information. The monitor



also intercepts each database command and expands it into
WHILESQL code to prevent leaks caused by triggers and
other database side-effects. While executing the code produced
during expansion, the monitor tracks the dependencies between
variables and queries.

This approach cleanly separates the application’s code and
the security policy, thus putting trust in the security monitor
instead of the application. This trust is formally justified
by proving that the security monitor satisfies our security
condition. Our monitor also supports a rich class of policies,
including dynamic policy changes. The policies are expressed
using GRANT and REVOKE commands, and the monitor ensures
their end-to-end interpretation through the application-database
boundary. This approach is transparent to the applications and
does not require customized database support.

A. Preliminaries

We leverage disclosure lattices to reason about the infor-
mation disclosed by sets of queries [8]. Recall that a security
policy specifies a set of database tables and views that a
user is authorized to read. Hence, policies can be seen as
sets of database queries, which are elements of a disclosure
lattice. This natural connection between disclosure lattices,
queries, and policies allows us to track cumulative information
disclosures across multiple queries and determine whether a
new query would increase the total amount of information
beyond what is actually allowed by the policy. Additionally,
disclosure lattices allow us to track fine-grained dependencies
across the application and the database. This is needed to
enforce realistic security policies, such as row-level database
policies. We discuss the benefits of using disclosure lattices for
IFC in §V-C. In the following, we fix a database configuration
〈D,Γ〉 and we refer only to database states db defined over
the schema D and that satisfy the integrity constraints in Γ.

Predicate queries. A predicate query is a query of the form
T (v), where T is a table identifier in D and v ∈ Val |T | is
a tuple of values whose length is T ’s arity |T |. A predicate
query represents a single tuple in the database. The set of all
predicate queries is RC pred .

Determinacy. Query determinacy [35] is the task of deter-
mining, given two sets of queries Q and Q′, if the results
of the queries in Q are always sufficient to determine the
result of the queries in Q′. Formally, Q determines Q′, written
Q � Q′, iff for all database states db, db′, if [q]db = [q]db

′

for all q ∈ Q, then [q′]db = [q′]db
′

for all q′ ∈ Q′, where [q]db

denotes q’s result in db. For instance, the set {T (1), R(2)}
determines the query T (1) ∨R(2). In general, determinacy is
different from logical entailment, e.g., T (1) |= T (1) ∨ R(2)
but T (1) 6� T (1) ∨R(2).

Query support. The support of a query q contains all tuples
that may influence q’s results. To precisely capture a query’s
support, we first introduce the notion of minimal determinacy.
A set of predicate queries Q minimally determines q, denoted
minDet(Q, q), iff Q is the smallest set that determines q.
Formally, minDet(Q, q) iff Q � q and there is no Q′ ⊂ Q

cl({T (1), R(2)})
cl({T (1)}) cl({R(2)})

⊥

Fig. 3: Disclosure lattice for the queries T (1) and R(2).

such that Q′ � q.The support of q, denoted supp(q), contains
all sets of tuples that minimally determine q, i.e., supp(q) :=

{Q ∈ 2RC pred | minDet(Q, q)}.That is, supp(q) contains all
and only those tuples that may influence q’s outcome. For
instance, the query T (1) ∨R(2) is minimally determined by
{T (1), R(2)}. Hence, its support is {{T (1), R(2)}}.

We consider only sets of integrity constraints Γ such that
supp(q) = {{q}} for all predicate queries q ∈ RC pred . In-
tegrity constraints commonly used in practice, such as primary
and foreign keys, satisfy this requirement. This guarantees that
the information associated with a predicate query depends just
on the query itself.

Disclosure orders and lattices. Bender et al. [8] recently
introduced disclosure orders and lattices to reason about the
information disclosed by queries. Given two sets of queries Q1

and Q2, disclosure lattices provide a precise model for answer-
ing questions such as “Does Q1 reveal more information than
Q2?” or “What is the combined and the common information
that is disclosed by both Q1 and Q2?”

A disclosure order [8] is a binary relation � over sets of
queries (i.e., over 2RC where RC is the set of all queries),
such that: (1) for all Q,Q′ ∈ 2RC , if Q ⊆ Q′, then Q � Q′,
(2) for all Q,Q′, Q′′ ∈ 2RC , if Q � Q′ and Q′ � Q′′, then
Q � Q′′, and (3) for all Q,Q′, Q′′ ∈ 2RC , if Q � Q′′ and
Q′ � Q′′, then Q ∪Q′ � Q′′.

A disclosure order � is, in general, not anti-symmetric.
Hence, as is standard in lattice theory [18], we introduce
the concept of closure, which we use to construct a lattice.
Given a set of queries Q and a disclosure order �, the
closure of Q, written cl(Q), is {q ∈ RC | {q} � Q}. The
�-disclosure lattice [8] is a tuple 〈L,v,t,u,⊥,>〉 where
(1) L = {cl(Q) | Q ∈ 2RC}, (2) cl(Q) v cl(Q′) iff Q � Q′,
(3) cl(Q) u cl(Q′) = cl(Q) ∩ cl(Q′), (4) cl(Q) t cl(Q′) =
cl(Q ∪Q′), (5) ⊥ = cl(∅), and (6) > = cl(RC ).

Determinacy induces an ordering on the information content
of queries. Hence, it is a good candidate for defining disclosure
lattices. Formally, we define the determinacy-based disclosure
order using the relation ��: given Q,Q′ ∈ 2RC , Q �� Q′ iff
Q′ � Q. Note that Q �� Q′ means that Q is less informative
than Q′. As shown in [8], �� is a disclosure order and the
corresponding disclosure lattice is complete. Figure 3 depicts
the portion of the lattice involving the queries T (1) and R(2).

B. Security monitor

We now present our dynamic security monitor. For simplicity,
we consider a single attacker, denoted by the user atk . We
denote by sec0 the initial security policy.

Security lattice. Our security monitor uses the disclosure
lattice to track information. As a security lattice, we use the



disclosure lattice 〈L,v,t,u,⊥,>〉 defined over the database
schema D, where v is ��. Since query determinacy is
undecidable in general [35], in §VI we present a practical
approximation for handling disclosure lattices.

Monitor states. A monitor state ∆ is a function Var ∪
RC pred ∪ {pcu | u ∈ UID} → L that associates each variable
and predicate query (which represents a tuple) with a label. The
monitor state also stores the label associated with the security
context of each program. Since each user u executes only one
program, we formalize the program’s security context using
identifiers of the form pcu, where u ∈ UID is the user execut-
ing the program. For example, ∆(pcBob) captures the label asso-
ciated with the condition of an if statement if Bob’s program is
executing a branch of the if statement. We lift ∆ to expressions:
∆(e) =

⊔
x∈vars(e) ∆(x), where e is an expression and vars(e)

are its free variables. The monitor’s initial state ∆0 is as follows:
(a) for each x ∈ Var , ∆0(x) = ⊥, (b) for all q ∈ RC pred ,
∆0(q) = cl(q), and (c) for all u ∈ UID , ∆0(pcu) = ⊥.

Mapping queries to labels. Our security monitor tracks only
dependencies between predicate queries, i.e., tuples. Hence, we
use the function LQ to derive the label associated with general
queries: LQ(∆, q) =

⊔
Q∈supp(q)

⊔
q′∈Q ∆(q′). The function

associates to a query q the join of the labels associated with
all predicate queries in q’s support. This ensures that LQ(∆,
q) accounts for the labels of all predicate queries that may
influence q’s results. For instance, given a monitor state ∆,
the query T (1) ∨R(2), whose support is {{T (1), R(2)}}, is
associated with the label ∆(T (1)) t∆(R(2)), thus capturing
that it reveals information about T (1) and R(2). For predicate
queries T (v), LQ(∆, T (v)) = ∆(T (v)).

Mapping users to labels. The function LU maps users to
labels in our security lattice. Since we are interested in end-
to-end security guarantees, we associate to the attacker atk
the set of tables and views he is authorized to read according
to the current access control policy and to the initial policy
sec0. Formally, LU (s, u) = > for any u /∈ {atk , public}. For
the attacker atk , LU (s, atk) = cl(auth(s, atk) ∪ auth(sec0,
atk)), which captures what the attacker can observe according
to the initial policy sec0 and the policy in s. Finally, LU (s,
public) = LU (s, atk). For example, given a security policy
sec0 stating that the attacker atk can read the table T but
not the table R, Lsec0

U (s, atk) =
⊔
v∈Val cl(T (v)). In the

following, we omit the reference to sec0 when this is clear
from the context, i.e., we write LU (s, u) instead of Lsec0

U (s, u).
The mappings LQ and LU allow us to reason about informa-

tion disclosure. For instance, if the above attacker observes the
result of the query q = SELECT T (1)∨R(2) when the monitor
state is ∆0, this violates the security policy. In fact, LQ(∆0,
q) 6v LU (s, atk), since cl({T (1), R(2)}) 6v

⊔
v∈Val cl(T (v)).

Expansion process. To correctly handle triggers, our monitor
rewrites each SQL command into WHILESQL statements
encoding the triggers’ execution. We do so using the expand(s,
m, u, x← q) function, which takes as input a system state s,
a memory m, a user u, and a statement x← q, and produces

as output the statements modeling the triggers’ execution and
database’s other side effects.

In a nutshell, the expand function works as follows. First,
depending on the query q and the database configuration in
s, expand computes all possible execution paths, which are
sequences of queries and triggers together with their results.
In particular, a query may successfully execute or generate an
integrity or a security exception. Triggers additionally may not
be enabled, that is they are not executed since their condition
is not satisfied. Afterward, expand translates each execution
path into an if statement. For each execution path, the if’s
body contains the WHILESQL statements implementing the
execution of the queries and the triggers as described in the
path. In contrast, the if’s condition checks whether the weakest
precondition for the actual execution of the path is met. For
instance, the code checks whether the condition of an enabled
trigger is actually satisfied or whether executing a command
would lead to an integrity exception if the execution path says
so. To achieve this, we designed a procedure for computing
the weakest precondition starting from execution paths. This
can always be automatically computed since execution paths
are loop-free. We formalize expand(s,m, u, x← q) and prove
its correctness in [23]. Example 1 concretely illustrates how
expand works.

Additional queries and statements. Our monitor extends
WHILESQL with two designated queries T ⊕ e and T 	 e,
and four designated statements asuser(u′, c), ‖x ← q‖, [c],
and set pc to l. The T ⊕ e (respectively T 	 e) query inserts
into (respectively deletes from) the table T the tuple e without
database-level side effects like firing triggers or throwing
exceptions in case integrity constraints are violated. The
asuser(u′, c) statement is used to execute the command c as
the user u′ (inside the session of the user u executing the
asuser(u′, c) statement). Finally, the ‖x← q‖ statement, where
x is a variable and q is a query, denotes a query statement
that has already been processed by expand . All the above
queries and statements are used during the expansion process.

To avoid internal timing leaks caused by executing multiple
programs in parallel [39], the monitor’s semantics executes
branching statements atomically, i.e., without interleaving the
execution of other programs whenever a program is executing a
branching statement. To do so, we introduce statements of the
form [c] denoting that the command c should be executed atom-
ically, and statements set pc to l, where l is a label in L, which
are used to update the label associated to the program’s context.

Enforcement rules. Figure 4 presents selected rules from our
monitor’s semantics. The rules use the auxiliary functions LU
and LQ to derive the security labels associated with users and
queries. We present the full operational semantics in [23].

The rule F-ASSIGN updates the monitor’s state whenever
there is an assignment. This rule prevents leaks using No-
Sensitive Upgrade (NSU) checks [50]. The rule F-OUT en-
sures that the monitor produces only secure output events. It
outputs the value of the expression e to the user u′ only if
the security labels associated with e and the program counter



F-ASSIGN
∆(pcu) v ∆(x) ∆′ = ∆[x 7→ ∆(pcu) t∆(e)]

〈∆, x := e,m, s〉 u 〈∆′, ε,m[x 7→ JeK(m)], s〉

F-OUT
∆(e) t∆(pcu) v LU (s, u′)

〈∆, out(u′, e),m, s〉
〈u′,JeK(m)〉

u 〈∆, ε,m, s〉

F-EXPAND
ce = expand(s, x, q, u)

〈∆, x← q,m, s〉 u 〈∆, [ce],m, s〉

F-IFTRUE
JeK(m) = tt c′ = [c1 ; set pc to ∆(pcu)] ∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-SELECT
{v1, . . . , vn} = vars(ϕ)

ϕ′ = ϕ[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)] q = SELECT ϕ JqK(s, u) = 〈s′, r, ε〉 `ϕ = LQ(∆, ϕ) t
⊔

v∈vars(ϕ)

∆(v) ∆(pcu) v ∆(x)

〈∆, ‖x← SELECT ϕ‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `ϕ], ε,m[x 7→ r], s′〉

F-UPDATEDATABASEOK
v = 〈Je1K(m), . . . , JenK(m)〉

⊗ ∈ {⊕,	} JT ⊗ vK(s, u) = 〈s′, r, ε〉 `e =
⊔

1≤i≤n

∆(ei) `e v ∆(T (v)) ∆(pcu) v ∆(T (v)) ∆(pcu) v ∆(x)

〈∆, ‖x← T ⊗ 〈e1, . . . , en〉‖,m, s〉 u 〈∆[T (v) 7→ ∆(pcu) t `e, x 7→ ∆(pcu) t `e], ε,m[x 7→ r], s′〉

F-UPDATECONFIGURATIONOK
{v1, . . . , vn} = vars(q) q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)] isCfgCmd(q′)

Jq′K(s, u) = 〈s′, r, ε〉 `cmd =
⊔

1≤i≤n

∆(vi) `cmd v cl(auth(sec0, atk)) ∆(pcu) v cl(auth(sec0, atk)) ∆(pcu) v ∆(x)

〈∆, ‖x← q‖,m, s〉
〈public,q′〉

u 〈∆[x 7→ ∆(pcu) t `cmd ], ε,m[x 7→ r], s′〉

Fig. 4: Security monitor – selected rules.

are authorized to flow to u′, i.e., ∆(e) t∆(pcu) v LU (s, u′).
The rule F-IFTRUE, instead, executes the then branch c1 in
an if statement and updates the labels of pcu based on the
label of the if’s condition. The rule relies on the set pc to l
command to reset the label of pcu when leaving the then
branch. Note that the rule encapsulates both the then branch
c1 and the set pc to l statement inside an atomic statement
[c1 ; set pc to l] to prevent internal timing channels caused
by the scheduler. We remark that the above rules implement
standard dynamic information-flow tracking [38].

The rule F-EXPAND ensures that triggers as well as integrity
constraint checking is de-sugared into WHILESQL code using
the expand function. The F-SELECT rule ensures, using NSU
checks, that the queries’ results are stored only in variables
with the proper security labels. The rule, finally, updates the
label of the variable storing the query’s result to correctly
propagate the flow of information.

The rule F-UPDATECONFIGURATIONOK handles configura-
tion commands, i.e., GRANT, REVOKE, and CREATE commands.
Since configuration changes are visible to atk (i.e., the rule pro-
duces a public observation), the rule ensures that such changes
are performed only in contexts that are initially low for the
attacker, i.e., ∆(pcu) v cl(auth(sec0, atk)). Furthermore, the
rule prevents leaks of sensitive information using the free vari-
ables in the commands by checking that `cmd v cl(auth(sec0,
atk)). The rule also uses NSU checks to ensure that the query’s
results are stored only in variables with the proper security
labels. The rule uses the predicate isCfgCmd(q), which returns
> iff q is a configuration command. Finally, the rule F-
UPDATEDATABASEOK handles queries that modify the data-

base content. The rule ensures that there are no changes to the
security labels based on secret information using NSU checks.
The rule keeps also track of the labels associated with the infor-
mation stored in the database by updating the monitor’s state ∆.

In WHILESQL, policy changes are publicly visible. This
eliminates leaks through authorization channels [2], and no
additional checks (cf. channel context bounds [3]) are needed.

Theorem 1, proven in [23], states that our monitor is sound:
it satisfies Def. 2 with  as the evaluation relation.

Theorem 1. For all sequences of programs C ∈ Com∗UID ,
schedulers S, sequences of memories M ∈ Mem∗UID , and
system states s, whenever r = 〈∆0, C,M, 〈s, ε〉,S〉 τ n 〈∆′,
C ′,M ′, 〈s′, ctx′〉,S ′〉, then for all 1 ≤ i ≤ n, K atk (〈M, s〉, C,
S, trace(ri−1))∩Aatk ,sec(s) ⊆ K atk (〈M, s〉, C,S, trace(ri)),
where K atk refers to Def. 1 with  as evaluation relation and
the system state in r’s (i− 1)-th configuration is 〈db, U, sec,
T, V 〉.

Example 1. Let T, V, Z be three tables, t be the trigger defined
by the administrator using the command CREATE TRIGGER t
ON T AFTER INSERT IF V (1) DO {INSERT 1 INTO Z}, and
s be a state containing t. In this context, the statement
x← INSERT 2 INTO T is expanded as follows (provided that
all commands are authorized by the policy and there are no
integrity constraints): ‖y ← SELECT V (1)‖; if y then {‖x←
T ⊕ 2‖; asuser(admin, ‖z ← Z ⊕ 1‖)} else {‖x← T ⊕ 2‖}.

Suppose the attacker atk executes x ←
INSERT 2 INTO T ;w ← SELECT Z(1); out(atk , w) from a
system state s0 where the tables T and Z are empty and the
table V contains a single record with value 1. We illustrate the



monitor’s behavior for the security policy where atk cannot
read V but can read and modify T and Z. In this case, the
program is insecure since the presence of 1 in Z depends
(implicitly) on the presence of 1 in V , which atk cannot read.

Consider the program execution with the initial state
s0 as above, and the initial monitor state ∆0 such that
∆0(pcatk ) = ⊥. The attacker’s label is LU (s0, atk) =⊔
v∈Val cl(T (v))t

⊔
v∈Val cl(Z(v)). The monitor would apply

the rules F-EXPAND (explained above), F-SELECT, F-IFTRUE,
F-UPDATEDATABASEOK, F-ASUSER (not shown), F-UPDATE-
DATABASEOK, F-SETPC (not shown), F-SELECT, and F-OUT.
The evaluation of the first SELECT statement yields ∆′ =
∆0[y 7→ ∆(V (1))t⊥], i.e., ∆′(y) = cl(V (1)). The evaluation
of the boolean condition y yields ∆′ = ∆[y 7→ cl(V (1)),
pcatk 7→ cl(V (1))]. For the subsequent database update,
the monitor checks whether ∆′(pcatk ) v ∆′(T (2)), namely,
whether cl(V (1)) v cl(T (2)). Since this is not the case, the
monitor stops the execution and prevents the leakage. �

C. Discussion

Supported policies. Our monitor supports dynamic policies
expressed using GRANT and REVOKE commands. It also supports
row-level policies, which can be expressed using views that
disclose a subset of the tuples in a table.

Our monitor associates security labels with tuples. It does
not label columns and therefore it cannot enforce column-
level policies, which disclose only selected attributes of a
table, in their full generality. Despite that, many column-level
policies can be translated into equivalent row-level policies by
carefully refactoring the database schema. We illustrate this
with an example. Consider a table PERSON(id, name, salary),
with primary key id, where the attributes id and name are
public, while the attribute salary is secret. We can refactor
the table PERSON into two tables PERSONpublic(id, name) and
PERSONsecret(id, salary). Then, the column-level policy can
be enforced using row-level policies by granting access only
to PERSONpublic and not to PERSONsecret. More generally,
column-level policies can be encoded as row-level policies
(and enforced by our monitor) whenever the table’s primary
key is public, and the column-level policy does not change
during the execution.

Disclosure lattices. Disclosure lattices allow us to express fine-
grained tuple-level dependencies between data and variables,
such as “the value of the variable x may depend on the initial
values of the queries T (1) and V (2), but not on the value of the
query R(3).” Our monitor leverages disclosure lattices to record
all the data that may have influenced a variable’s current value.
In contrast, existing approaches, such as [7], [43], track column-
level dependencies using the standard “low” and “high” labels.

While these two approaches are incomparable precision-wise
(see [23]), by tracking tuple-level dependencies, we can directly
support row-level policies, which are a common policy idiom
from database security, and form the basis of many fine-grained
database access control models [12], [24], [37], [48]. Row-
level policies cannot be easily supported using column-level

dependency tracking since there is no way to assign distinct
security labels to subsets of tuples in a table. Additionally, we
can also enforce static column-level policies by refactoring the
database schema.
Multiple attackers. To ease the presentation, our monitor
considers a fixed attacker atk . Specifically, Theorem 1
guarantees that atk cannot access sensitive information and that
other users’ programs do not reveal sensitive information to atk .

To handle arbitrary attackers, we can replace all checks of the
form ` v cl(auth(sec0, atk)) with

∧
u∈U ` v cl(auth(sec0,

u)), all checks of the form ` v LU (s, public) with
∧
u∈U ` v

cl(auth(sec0, u) ∪ auth(sec, u)), and all checks of the form
` v LU (s, u), where u 6= public, with ` v cl(auth(sec0,
u) ∪ auth(sec, u)), where U is the set of users, sec0 is the
initial policy, sec is the policy in the state s. This guarantees
that each user accesses only the information he is authorized to
access by the policy, i.e., it ensures that our security condition
is satisfied for all users u.

VI. DISCLOSURE LATTICES IN PRACTICE

Our monitor tracks fine-grained dependencies between tu-
ples and variables using disclosure lattices. However, directly
computing with disclosure lattices is challenging. For instance,
checking l1 v l2 and computing LQ(∆, q) both requires
solving query determinacy, which is undecidable in general. We
now propose a practical way of approximating computations
over disclosure lattices.

A. Approximating disclosure lattices

Our security monitor in §V relies on disclosure lattices for
several purposes. The monitor state ∆ maps variables and
tuples to labels in the lattice L. Additionally, security checks
are implemented using the lattice’s ordering relation v, and
label updates are implemented using the lattice’s join operator
t. Finally, we map queries and users to labels using the LQ,
LU , and auth functions.

An approximation of the (determinacy-based) disclosure
lattice provides lower and upper bounds for each of the
aforementioned components. Formally, an approximation is
a tuple 〈Labs ,vabs ,tabs ,∆abs

0 , Labs
Q , Labs

U , authabs , γ−, γ+〉,
where Labs is the set of abstract labels, vabs is a preorder
over abstract labels, tabs is the join operator over abstract
labels, Labs

Q maps abstract monitor states and queries to abstract
labels, Labs

U maps system states and users to abstract labels, and
authabs maps policies and users to abstract labels. Finally, γ− :
Labs → L and γ+ : Labs → L provide respectively lower and
upper bounds on the information content of abstract labels in
terms of the disclosure lattice L. An abstract label ` ∈ Labs rep-
resents all concrete labels l ∈ L such that γ−(`) v l v γ+(`).

We remark that we need both under- and over-approximations
to soundly check containment between labels since abstract
labels may occur on both sides of vabs .

B. Symbolic tuples

Symbolic tuples. Our approximation relies on symbolic tuples,
which concisely represent sets of concrete tuples (i.e., predicate



queries) using logical formulae. Formally, a symbolic tuple is a
pair 〈T, ϕ〉, where T is a table identifier of arity n and ϕ is a
boolean combination of equality and inequality constraints over
variables in {x1, . . . , xn} and values in Val . We denote by
STD the set of all symbolic tuples defined over the database
schema D.

The concretization of a symbolic tuple 〈T, ϕ〉, denoted
γ(〈T, ϕ〉), is the set {T (v1, . . . , v|T |) | v1, . . . , v|T | ∈ Val ∧
|=ϕ[x1 7→ v1, . . . , x|T | 7→ v|T |]} containing all possible con-
crete tuples that satisfy the constraint ϕ, where |=ϕ denotes
that ϕ is a valid formula.

For instance, the symbolic tuple 〈T, x1 6= x2〉 represents
the set of all concrete tuples T (v1, v2) such that v1 6= v2. The
concrete tuple T (1, 2) belongs to 〈T, x1 6= x2〉’s concretization
γ(〈T, x1 6= x2〉), while the concrete tuple T (1, 1) does not.

Abstract labels. In our approximation, we track lower and
upper bounds using two sets of symbolic tuples. Formally, a
label ` is a pair 〈S−, S+〉 such that S− and S+ are sets of
symbolic tuples. The set S− captures `’s lower bounds whereas
S+ captures `’s upper bounds. Given a label ` = 〈S−, S+〉, we
denote by `|− (respectively `|+) the set S− (respectively S+).

We can now formalize the lower and upper bound concretiza-
tion functions γ− and γ+. For an abstract label `, its lower-
bound (respectively upper-bound) concretization γ−(`) (respec-
tively γ+(`)) is the (closure of the) union of the concretizations
of all tuples in `|− (respectively `|+). That is, γ−(`) =
cl(
⋃
〈T,ϕ〉∈`|− γ(〈T, ϕ〉)) and γ+(`) = cl(

⋃
〈T,ϕ〉∈`|+ γ(〈T,

ϕ〉)).
The set Labs of all valid abstract labels contains all labels `

for which the lower-bound concretization is below its upper-
bound concretization with respect to the concrete ordering
v, i.e., Labs := {〈S−, S+〉 ∈ P(STD)2 | γ−(〈S−, S+〉) v
γ+(〈S−, S+〉)}.

Consider the abstract label ` = 〈{〈T, x1 = 2〉}, {〈T,>〉,
〈R,>〉}〉. It represents all concrete labels l such that cl({T (2,
x2) | x2 ∈ Val}) v l v cl({T (x1, x2) | x1, x2 ∈ Val}) t
cl({R(x1) | x1 ∈ Val}). This implies, for instance, that `
at most contains as much information as the tables T and
R. However `′′ = 〈{〈T,>〉, 〈R,>〉}, {〈T, x1 = 2〉}〉 is not a
valid abstract label since γ−(`′′) 6v γ+(`′′).

Ordering relation. The abstract ordering relation vabs is as
follows: 〈S−1 , S

+
1 〉 vabs 〈S−2 , S

+
2 〉 iff for all symbolic tuples

〈T, ϕ〉 ∈ S+
1 , there is a symbolic tuple 〈T, ϕ′〉 ∈ S−2 such that

ϕ |= ϕ′, where ϕ |= ϕ′ denotes that any assignment that satis-
fies ϕ also satisfies ϕ′ (this is equivalent to γ(〈T, ϕ〉) ⊆ γ(〈T,
ϕ′〉)). This ensures that whenever 〈S−1 , S

+
1 〉 vabs 〈S−2 , S

+
2 〉 is

satisfied, then γ+(〈S−1 , S
+
1 〉) v γ−(〈S−2 , S

+
2 〉) holds as well.

Hence, the concrete tuples represented by 〈S−1 , S
+
1 〉 are below

those represented by 〈S−2 , S
+
2 〉.

To illustrate, consider the abstract labels `1 = 〈∅, {〈T, x1 =
2 ∧ x2 6= x1〉}〉 and `2 = 〈{〈T, x1 = 2〉}, {〈T,>〉, 〈R,>〉}〉.
It is easy to see that `1 vabs `2 holds: any concrete tuple in
γ+(`1) also belongs to γ−(`2) since any satisfying assignment
for x1 = 2∧x2 6= x1 also satisfies x1 = 2. In contrast, `2 6vabs

`1. For instance, T (1, 1) belongs to γ+(`2) but not to γ−(`1).

Join operator. The join operator between abstract labels is the
pairwise union of their components: given two labels `1 = 〈S−1 ,
S+

1 〉, `2 = 〈S−2 , S
+
2 〉 ∈ Labs , their join `1tabs `2 is 〈S−1 ∪S

−
2 ,

S+
1 ∪ S

+
2 〉. For instance, given two abstract labels `1 = 〈{〈T,

x1 = 2〉}, {〈T,>〉}〉 and `2 = 〈{〈T, x1 6= x2〉}, {〈T,>〉}〉, the
label `1 tabs `2 is 〈{〈T, x1 = 2〉, 〈T, x1 6= x2〉}, {〈T,>〉}〉.
Labeling queries. To map queries to labels, we need both
lower and upper bounds for LQ. In the following, let ∆abs be
an abstract monitor state and q be a boolean query. Moreover,
we denote LQ’s lower and upper bounds respectively by `−

∆abs ,q

and `+
∆abs ,q

. Namely, Labs
Q (∆abs , q) = 〈`−

∆abs ,q
, `+

∆abs ,q
〉. We

formalize `−
∆abs ,q

and `+
∆abs ,q

below. Without loss of generality,
we assume that universally quantified statements ∀x. ϕ are
expressed as ¬∃x.¬ϕ.
Over-approximating queries. We compute the upper bound
of LQ in two steps. We first extract the symbolic tuples from
the query q. We then compute `+

∆abs ,q
by accounting for the

labels in ∆abs .
Given a query q, the function cstrs(q) extracts the symbolic

tuples from q. We denote by subf (q) the set of q’s immediate
sub-formulae that contain predicate symbols. Moreover, nf (q)
denotes that q is of the form T (x)∧ϕ, where ϕ is a (possibly
empty) boolean combination of equalities and inequalities over
variables in x and values in Val . The set cstrs(q) is recursively
defined as cstrs(q) =

(⋃
q′∈subf (q)∧¬nf (q) cstrs(q′)

)
∪ {〈T,

ϕ〉 | nf (q)∧q = (T (x)∧ϕ)}. Observe that the concrete tuples
represented by the symbolic tuples in cstrs(q) contain those
in q’s support. That is, supp(q) ⊆

⋃
〈T,ϕ〉∈cstrs(q) γ(〈T, ϕ〉).

Given a symbolic tuple 〈T, ϕ〉 and a finite set M of predicate
queries of the form T (v), we denote by R(〈T, ϕ〉,M) the most
precise symbolic tuple 〈T, ϕ′〉 such that (γ(〈T, ϕ〉) \M) ⊆
γ(〈T, ϕ′〉).

Given an abstract state ∆abs and a query q, we compute
`+
∆abs ,q

as:

⋃
〈T,ϕ〉∈cstrs(q′)

 ⋃
T (v)∈γ(〈T,ϕ〉)∩MT

∆abs(T (v))|+ ∪ {R(〈T, ϕ〉,MT )}


where q′ is the query obtained by recursively replacing views
with their definitions and MT is the set {T (v) ∈ RC pred |
∆abs(T (v))|+ 6= ∆abs

0 (T (v))|+} of all predicate queries
whose upper bound is different from the initial one.

To illustrate, consider the query q defined as ∃x.(T (2, x) ∧
(x = 3 ∨ x = 4)) ∧ ∀x. R(x) → ∃y. S(3, y). Computing
cstrs(q) produces the symbolic tuples: {〈T, x1 = 2 ∧ (x2 =
3 ∨ x2 = 4)〉, 〈R,>〉, 〈S, x1 = 3〉}. Given a monitor state
∆abs such that ∆abs(T (2, 3))|+ 6= ∆abs

0 (T (2, 3))|+ results in
`+
∆abs ,q

being: ∆abs(T (2, 3))|+ ∪ {〈T, x1 = 2 ∧ x2 = 4〉, 〈R,
>〉, 〈S, x1 = 3〉}.
Under-approximating queries. Producing useful lower
bounds for queries is more difficult than finding upper bounds.
In particular, computing non-trivial lower bounds for a query
q is, in general, as difficult as determining whether q is unsat-
isfiable. Here, we target a restricted class of queries satisfying
specific syntactic properties.



We say that a query q is well-formed if it is a boolean com-
bination of formulae ∃x. T (x)∧ψ such that (1) nf (T (x)∧ψ)
holds, (2) the formula ψ is satisfiable, (3) for any two distinct
sub-formulae ∃x. T (x)∧ψ and ∃x. T (x)∧ψ′, there is no v sat-
isfying both ψ and ψ′, and (4) there are no integrity constraints
involving tables occurring in q. The first requirement ensures
that we can precisely extract symbolic tuples using the cstrs(q)
function described above. The second requirement ensures that
each symbolic tuple represents at least one concrete tuple. The
third requirement ensures that the symbolic tuples represent
disjoint sets of concrete tuples. The fourth requirement, finally,
guarantees that integrity constraints do not affect the symbolic
tuples in cstrs(q). These requirements guarantee that cstrs(q)
correctly identifies a set of tuples that belong to q’s support.

For a well-formed query q, we com-
pute the under-approximation `−

∆abs ,q
as⋃

〈T,ϕ〉∈cstrs(q)

(⋃
T (v)∈γ(〈T,ϕ〉) ∆abs(T (v))|−

)
. If q is not

well-formed, then `−
∆abs ,q

= ∅. Finally, if q refers to views,
then `−

∆abs ,q
= `−

∆abs ,q′
, where q′ is the query obtained by

recursively replacing views with their definitions.
Consider the query q: S(1, 2)∨¬∃x. T (1, x)∨∃x. T (2, x).

This query satisfies our well-formedness criteria. For instance,
the two sub-formulae ∃x. T (1, x) and ∃x. T (2, x) depend
on disjoint sets of tuples in the table T . Computing cstrs(q)
results in the set {〈S, x1 = 1∧ x2 = 2〉, 〈T, x1 = 1〉, 〈T, x1 =
2〉}. Hence, `−

∆abs ,q
is ∆abs(S(1, 2))|− ∪

⋃
v∈Val ∆abs(T (1,

v))|− ∪
⋃
x∈Val ∆abs(T (2, v))|−.

Labeling users. For the abstract mapping from users to labels,
we first define authabs and afterwards derive Labs

U . We use
the former to derive an abstract label representing what a user
can read according to an arbitrary policy. We use the latter to
derive a user’s permissions with respect to the current and the
initial policies.

Let sec be a security policy and u ∈ UID be a user. The
mapping authabs(sec, u) assigns to u all the symbolic tuples
that can be derived from the tables and views in the policy
sec. Observe that we consider only the views in normal form,
since those are the only ones that can be directly represented as
symbolic tuples, and ignore the others. That is, authabs(sec, u)
is 〈{〈T,>〉 | T ∈ auth(s, u)∩T}∪{〈T, ϕ〉 | V is a view∧V ∈
auth(s, u) ∧ def (V ) = (T (x) ∧ ϕ) ∧ nf (def (V ))},STD〉.

In contrast, the abstract mapping Labs
U from system states

and users to labels is as follows. For the attacker atk , Labs
U (s,

atk) is the join of what the attacker can read under the cur-
rent policy sec and the initial policy sec0, i.e., authabs(sec0,
atk)tabsauthabs(sec, atk). For the public user public, Labs

U (s,
public) = Labs

U (s, atk) since the attacker also observes public
observations. Finally, for users u distinct from atk and public,
Labs
U (s, u) = 〈STD,STD〉. Observe that the upper bounds for

authabs(sec, u) and Labs
U (s, atk) are always STD, i.e., they

represent the > element in the disclosure lattice. This does not
affect our monitor’s precision since both authabs(sec, u) and
Labs
U (s, atk) only occur on the left-hand side of vabs , so their

upper-bound components are never used.

Consider a policy sec where the user u is authorized to
read the table T and the views V (defined as {x, y | T (x,
y)∧R(x)}) and W (defined as {x, y | S(x, y)∧x 6= y}). The
function authabs maps sec and u to the label 〈{〈T,>〉, 〈S,
x1 6= x2〉},STD〉. Observe that the view V has been ignored
in authabs(sec, u) since it cannot be under-approximated using
symbolic tuples.
Initial monitor state. The initial abstract state ∆abs

0 is as
follows: for all predicate queries T (v) ∈ RC pred , the initial
label ∆abs

0 (T (v)) corresponds exactly to the query itself, i.e.,
〈{〈T,

∧
1≤i≤|T | xi = vi〉}, {〈T,

∧
1≤i≤|T | xi = vi〉}〉, whereas

for all x ∈ Var ∪ {pcu | u ∈ UID}, the initial label is the
one containing no information, i.e., ∆abs

0 (x) = 〈∅, ∅〉.
Soundness. In [23], we prove that the above approximation
preserves the monitor’s security guarantees. In the next section,
we implement this approach in DAISY and evaluate it through
different case studies.

VII. IMPLEMENTATION AND CASE STUDIES

We first present DAISY, a security monitor for database-
backed SCALA programs. Afterwards, we evaluate our ap-
proach’s feasibility using four realistic case studies.

A. Securing SCALA programs

We now present DAISY (publicly available at [22]), a se-
curity monitor for database-backed SCALA programs, which
implements the monitor presented in §V with the approxi-
mation from §VI. DAISY enforces end-to-end security across
application-database boundaries while supporting advanced
database features like triggers and dynamic security policies.
Implementation. We implement DAISY via monitor inlin-
ing [16] using SCALA’s macro facilities [13]. This allows a
programmer to write normal SCALA code that will then be
augmented with information-flow checks for both application-
level code and database queries simply by adding a @daisy
annotation on a class, object, or function definition. DAISY
uses the Z3 SMT solver [20] to compare symbolic tuples.
Supported fragment. To match the monitor presented in §V,
DAISY handles only the imperative subset of SCALA (including
all WHILESQL’s features) with limited support for higher-
order functions. To express queries, DAISY relies on the query
language supported by WHILESQL, and it translates queries
into SQL commands. The scheduling of threads is currently
handled explicitly using the designated function asUser. DAISY
can easily be extended to directly use SCALA’s multi-threading
facilities. We refer the reader to DAISY’s documentation for a
precise definition of the supported fragment.
Extensions. DAISY extends our monitor from §V with config-
uration functions, and multi-table symbolic tuples.

DAISY allows database administrators to specify functions
that modify the database configuration. These functions are
annotated with the @configuration annotation, and users
can invoke them inside their code. These functions also receive
as input the identifier of the user invoking them. To avoid
leaks, DAISY enforces the following restrictions: (a) functions



annotated with @configuration can be executed only when
∆(pc) = ⊥, and (b) they can only execute GRANT, REVOKE,
and CREATE commands.

DAISY implements a simple generalization of symbolic
tuples that allows us to track dependencies across multiple
tables, such as those introduced when joining tables. In addition
to symbolic tuples of the form 〈T, ϕ〉, DAISY supports symbolic
tuples of the form 〈T, ϕ〉, where T = T1· . . . ·Tn is a sequence
of table identifiers and ϕ is a boolean combination of equality
and inequality constraints over T1 × . . . × Tn. Informally,
〈T1· . . . ·Tn, ϕ〉 represents a set of concrete tuples over the
Cartesian product of the tables T1, . . . , Tn. Here, we discuss
how we extend vabs to handle multi-table symbolic tuples. The
other operators are extended in a straightforward way. Given
two labels 〈S−1 , S

+
1 〉 and 〈S−2 , S

+
2 〉, 〈S

−
1 , S

+
1 〉 vabs 〈S−2 , S

+
2 〉

iff for all symbolic tuples 〈T, ϕ〉 ∈ S+
1 , there are symbolic

tuples 〈T1, ϕ1〉, . . . , 〈Tn, ϕn〉 in S−2 such that T = T1· . . . ·Tn
and ϕ |= ϕ′1 ∧ . . . ∧ ϕ′n (where ϕ′i is obtained from ϕi by
renaming xj as xj+∑

i<j(Ti|0+...+Ti||Ti| ).

B. Case studies

To evaluate DAISY, we carried out four case studies
(available at [22]): (i) a social network, (ii) an assignment
grading system, (iii) a calendar application, and (iv) a
conference management system. Note that we only focus on
the security-critical parts of the applications. Our evaluation
has three objectives: to (1) validate that DAISY provides the
desired security guarantees, (2) confirm that our approximation
is not overly restrictive, and (3) evaluate DAISY’s overhead.

1) Social network: We implemented in SCALA the social net-
work model from §II. Without the trigger, DAISY considers the
program from §II as secure, since there is no leak of sensitive in-
formation. When the trigger is in place, DAISY correctly identi-
fies the leak of sensitive information. Specifically, by leveraging
our expansion procedure, DAISY successfully tracks the flows
of information across the program-database boundaries and
correctly rejects the program as insecure. Existing approaches
ignore the leaks caused by triggers and would accept the
program as secure. Moreover, our approximation is sufficiently
precise to correctly enforce the row-level policy “each user
can read only his friends’ reviews”; which cannot be enforced
by existing approaches that track column-level dependencies.

2) Assignment grading system: We model a system inspired
by one of URFLOW’s case studies [14]. The system allows
students to hand-in assignments that are graded by teaching
assistants (TAs) who only have access to students’ pseudonyms.

Database schema. The table students holds the students’
data. The table codes maps students to their pseudonyms. The
table tas stores TAs’ names, and handins(ID, txt) records
student submissions. The table grades(ID, grade) stores the
hand-ins’ grades, and owner(ID, studID) associates the hand-
ins with pseudonyms.

Security policy. Students are authorized to read their own
pseudonym, but they cannot read other entries in the table
codes. Moreover, they can read the grades only of their own

submissions. In contrast, TAs can read the handins table and
can read and modify the grades table. Thus, according to
our policy, a TA cannot leak information about a student s to
another student. We implement this policy using views and
GRANT commands; see [22].

Examples. In the following, a student submits a hand-in, a TA
grades it, and, then, the same student reads the grade.
asUser("stud1") {submitHandin("stud1",

"GoodSubmission")}
// TA inspects submission and grades it
asUser("ta") {
val firstSubmission = viewSubmissions().head
outputTo("ta", firstSubmission)
grade(firstSubmission, "Good")

} // student reads the grade:
asUser("stud1") { viewGrade("stud1") }

The example uses the helper functions submitHandin, grade,
viewGrade, and viewSubmissions, which encapsulate the inter-
action with the database. For example, the viewSubmissions

function is as follows:

def viewSubmissions() = select("{id, text |
handins(id, text)}")

DAISY accepts this program as secure and successfully
enforces the row-level policy “each student can read his grades.”
UR/FLOW would also consider the above program as secure.

Now, consider the same program where the function
viewSubmissions is defined as select("{id, text |

handins(id, text)AND codes(’stud1’, ’xyz’}"). The
program violates our policy: observing the output of
viewSubmissions leaks information about codes to the TA.
DAISY correctly detects such a leak and rejects the program as
insecure. UR/FLOW, however, would accept the program as se-
cure, since it ignores implicit leaks introduced by queries [14].

Finally, the TA tries to output the grades to a student stud2 .
DAISY prevents this since grades contains information about
stud1 that should not flow to stud2 .

asUser("ta") { // TA tries to leak everything:
val gr = select("{id, gr | grades(id, gr)}")
outputTo("stud2", gr) }

3) Calendar: We implement a calendar application that
supports creating events and adding other users as attendees.
We use DAISY to enforce the following policy: each user u
can read the information about an event’s participants only if
u is attending the event. As a result, if the event’s organizer
removes an attendee, that attendee can no longer view the
event’s other attendees. We implement the calendar application
as well as examples that comply with and violate the above
policy. See [22] for further details.

4) Conference management system: We model the key
aspects of a conference management system.

Database schema. The table user(ID, name) holds the
users’ data. The table paper(paperID, confID, title)
stores the papers’ information, whereas the table
authors(paperID, authorID) maps papers to authors and
reviewer(confID, revID) associates conferences with



reviewers. The table review(paperID, revID, decision)
stores reviews’ information.

Security policy. In our system, we have two roles: reviewers
and authors. As an author, a user u can access only the reviews
of his own papers. To encode this, for each user u, we introduce
the view reviewAu = {p, r, d | review(p, r, d) ∧ author(p,
u)}}. As a reviewer, a user u can access the reviews of all
papers submitted to conferences where he is a reviewer. This is
implemented using the view reviewRu = {p, r, d | review(p,
r, d) ∧ ∃c, t. (paper(p, c, t) ∧ reviewer(c, u))}. We can now
define the permissions. Whenever a user u acts as author, he
can read reviewAu. In contrast, when a user u acts as reviewer,
he can read reviewRu. Moreover, users can always read the
tables user, author, and reviewer. We model users logging
in as authors or as reviewers using the configuration functions
asAuthor and asReviewer, which are executed under the
administrator’s privileges and modify the policy as expected.

Examples. In the following snippet, a user u logs into the
application as an author (modeled using the asAuthor func-
tion) and retrieves the reviews of his EuroS&P papers.

asAuthor()
val revs = extractReviews("u", "EuroS&P 2019")
outputTo("u", revs)

This example relies on the extractReviews helper func-
tion, which returns the result of the query SELECT {p, t,
d | reviews(p, c, t, d) ∧ author(p, c, u)}, where u and c are
the user and the conference given as input. Symbolic tuples are
precise enough to determine that revs’ content depends only
on authorized information. Hence, DAISY correctly accepts
this program as secure. Approaches based on column-level
dependencies would reject this program as insecure.

To illustrate dynamic policies, consider the following snippet,
where a user u logs in as a reviewer, stores all reviews of all
papers for the conferences where he is a program committee
member in a variable data , switches his role to author, and
prints the data.

asReviewer()
val data = conferenceData("u")
asAuthor()
outputTo("u", data)

This example uses the conferenceData helper function
that returns the result of the query SELECT {p, t, d | review(p,
c, t, d) ∧ reviewer(c, u)}, where u is the user given as in-
put. The example violates our policy. While the function
conferenceData accesses only authorized data when u is
logged as a reviewer, the information is disclosed only after the
privileges have been revoked. DAISY detects that data’s content
is no longer authorized in the last statement and correctly
stops the execution. Hence, DAISY correctly handles dynamic
policies and tracks dependencies across policy changes.

5) Performance: We benchmarked our case studies (each
one comprising roughly 100 lines of code) on a 64-bit i7-4600U
CPU running ArchLinux with OpenJDK version 1.8.0 144. In
our experiments, DAISY introduces an overhead between 5%

and 10% compared to the code’s unmonitored execution. We
believe is acceptable for a proof-of-concept implementation.

VIII. RELATED WORK

IFC for database-backed applications. We compare our work
with existing IFC solutions for database-backed applications [7],
[14], [15], [17], [28], [31], [44], [49] with respect to three
aspects: (1) the database model, (2) the supported security
policies, and (3) whether the solution has been proved sound.
Figure 5 summarises how existing approaches fare with respect
to these criteria.

SIF [15] enforces IFC policies for Java web applications,
whereas Li and Zdancewic [31] present a system for statically
checking IFC policies for database-backed applications. Both
approaches are type-based, require programmers to manually
annotate programs with typing annotations, and consider only
simple database models and column-level policies. Another
type-based approach is IFDB [44], a system supporting de-
centralized IFC across databases and applications. Its Query
by Label model extends work on multi-level secure (MLS)
databases [33] and provides abstractions for dealing with
expressive IFC policies. It supports complex database features
and policies. Similarly to other MLS approaches, it relies on
poly-instantiation [30], which is not supported by the SQL
standard and requires ad-hoc extensions [21], [42]. Moreover,
it has neither a formal semantics nor a soundness proof. In
contrast to these type-based approaches, we do not require
program annotations, we support more complex dynamic row-
level policies, and our solution comes with a soundness proof
of security for a realistic database model.

JSLINQ [7], SELINKS [17], [45], and SELINQ [43] secure
applications that interact with databases through language-
integrated queries. In contrast to DAISY, they consider simpler
database models and ignore constructs like triggers and integrity
constraints. Moreover, JSLINQ and SELINQ only support
column-level policies, while SELINKS also supports row-level
policies. However, none of them support row-level policies
where privileges can be granted and revoked as we do. Lourenço
and Caires [32] introduce dependent information flow types
which allow the types’ security levels to depend on runtime val-
ues, thus enabling row-level policies. Their main goal is using
dependent types for IFC; they therefore ignore the challenges
posed by advanced database features and dynamic policies.

URFLOW [14] is a static information flow analysis tool
for UR/WEB applications. It supports policies expressed as
SQL queries that leverage the users’ runtime knowledge. The
enforcement is done by symbolic execution over a model of
the web application. DAISY can enforce similar policies and it
supports features like triggers and dynamic policies. Moreover,
URFLOW provides no precise security guarantees, as it ignores
some implicit flows.

LWEB [36] is a framework for developing secure multi-
tier applications in Haskell. LWEB enforces data-dependent
column- and row-level policies (expressed in Haskell), where
the labels associated with columns and tuples may depend
on the tuples’ values. Similarly to LWEB, we also support



DATABASE FEATURES SECURITY POLICIES Soundness
proofINSERT - Dynamic Triggers Integrity Views Column Row

DELETE policies constraints level level
SIF [15] X X1 X X
Li et al. [31] X1 X
IFDB [44] X X1 X X X X X
JSLINQ [7] X1 X X
SELINKS [17] X X1 X X X
SELINQ [43] X X
Lourenço et al. [32] X X X X
URFLOW [14] X X X
LWEB [36] X X1 X X X
JACQUELINE [49] X X X X X
DAISY X X X X X X2 X X

1Only declassification 2Only static column-level policies

Fig. 5: Comparison with other IFC approaches for database-backed applications

data-dependent row-level policies, which can be formalized
using views, and a restricted class of column-level policies. In
contrast to our work, LWEB ignore advanced database features,
like triggers, and it supports only declassification, while DAISY
supports dynamic policies where permissions can be granted
and revoked at runtime.

JACQUELINE [49] presents an IFC approach that secures
database-backed applications using faceted execution [5].
JACQUELINE adopts a policy-agnostic programming model,
where the language runtime modifies the computation to pro-
duce policy compliant results. In contrast to modifying the
results, our monitor prevents leaks by terminating the execution.
In JACQUELINE, security policies are formalized as program
functions and both row-level and column-level policies are
supported. However, JACQUELINE consider a simpler database
model than our work and it ignores security-critical database
features like triggers.

To summarise, existing works consider unrealistic database
models, ignore dynamic policies where permissions can be
granted and revoked, or provide informal soundness arguments.
In contrast, our work has the following distinguishing features:
(1) a realistic database model, which accounts for security-
critical constructs like triggers, views, and dynamic policies,
(2) a monitor combining information-flow tracking with dis-
closure lattices that can enforce dynamic row-level and static
column-level policies, and (3) a soundness proof of security
for a realistic database model.
Security conditions. Our security condition is inspired by
existing knowledge-based notions for dynamic policies [3], [6],
[11]. While the semantics for dynamic policies remains an open
research problem, our security condition captures security with
respect to a perfect recall attacker. Askarov and Chong [3] pro-
pose security conditions against all attackers. We conjecture that
our security monitor also enforces security against all attackers.
Hicks et al. [27] propose non-interference between updates,
which ensures non-interference between policy changes, while
ignoring information leaks across such changes. Bohannon et
al. [10] study reactive noninterference to reason about security
policies in languages with event handlers like client-side web
applications. The execution model for event handlers is similar

to the execution of triggers in our language. We refer the reader
to Broberg et al. [11] for a survey of dynamic policies.
Label models. The universal lattice by Hunt and Sands [29]
allows expressing dependencies between variables, where the
lattice’s elements are sets of variables and the order relationship
is set containment. In contrast, disclosure lattices allow us to rea-
son about dependencies between queries. By directly combining
disclosure lattices with dynamic information-flow tracking, we
track tuple-level dependencies between variables and queries,
which would otherwise be lost using simpler label models,
e.g., the “high” and “low” lattice. This allows us to support
dynamic row-level policies and static column-level policies.
Database access control. Many security conditions have been
proposed for attackers that can issue only SELECT queries [8],
[9], [24], [37], [48]. Guarnieri et al. [25] extend database
access control by supporting advanced features, such as
triggers and dynamic policies. WHILESQL’s database model
builds on top of Guarnieri et al.’s database semantics. Bender
et al. [8], [9] introduce disclosure lattices to reason about fine-
grained security policies in databases. We leverage disclosure
lattices to track information-flows through the application and
database boundary.

QAPLA [34] is a database access control middleware support-
ing complex security policies, such as linking and aggregation
policies, that go beyond what is supported by commercial
database systems. Our monitor supports only policies that
can be expressed in the SQL access control model. Hence, it
does not support policies like linking or aggregation. QAPLA,
however, cannot enforce end-to-end IFC policies across the
application/database boundary.

Research on mandatory database access control has histori-
cally focused on Multi-Level Security [21], [33], where both
the data and the users are associated with security levels. In
contrast to WHILESQL, MLS systems consider, in general,
fixed security policies (cf. the tranquility principle [41]) and
rely on poly-instantiation [30].

IX. CONCLUSION

Securing database-backed applications requires reasoning
about the program and the database as a whole. Motivated by



the severe limitations of existing approaches, we developed
a novel security monitor that enforces security policies in an
end-to-end fashion across the application-database boundary.
In contrast to existing approaches, our monitor accounts for
realistic database model, and it leverages disclosure lattices to
track fine-grained tuple-level dependencies between variables
and tuples and to enforce expressive dynamic policies. DAISY
implements our security monitor for SCALA programs, and it
relies on symbolic tuples, a novel efficient approximation of
disclosure lattices. DAISY demonstrates how realistic database
models and database theory can be combined with language-
based security techniques to effectively protect systems against
larger classes of attacks.
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