
Strong and Provably Secure Database Access Control

Marco Guarnieri
Institute of Information Security

Department of Computer Science
ETH Zurich, Switzerland

marco.guarnieri@inf.ethz.ch

Srdjan Marinovic
The Wireless Registry, Inc.

Washington DC, US
srdjan@wirelessregistry.com

David Basin
Institute of Information Security
Department of Computer Science

ETH Zurich, Switzerland
basin@inf.ethz.ch

Abstract—Existing SQL access control mechanisms are ex-
tremely limited. Attackers can leak information and escalate
their privileges using advanced database features such as
views, triggers, and integrity constraints. This is not merely
a problem of vendors lagging behind the state-of-the-art. The
theoretical foundations for database security lack adequate
security definitions and a realistic attacker model, both of
which are needed to evaluate the security of modern databases.
We address these issues and present a provably secure access
control mechanism that prevents attacks that defeat popular
SQL database systems.

1. Introduction

It is essential to control access to databases that store
sensitive information. To this end, the SQL standard de-
fines access control rules and all SQL database vendors
have accordingly developed access control mechanisms. The
standard however fails to define a precise access control
semantics, the attacker model, and the security properties
that the mechanisms ought to satisfy. As a consequence,
existing access control mechanisms are implemented in an
ad hoc fashion, with neither precise security guarantees nor
the means to verify them.

This deficit has dire and immediate consequences. We
show that popular database systems are susceptible to two
types of attacks. Integrity attacks allow an attacker to per-
form non-authorized changes to the database. Confidentiality
attacks allow an attacker to learn sensitive data. These at-
tacks exploit advanced SQL features, such as triggers, views,
and integrity constraints, and they are easy to carry out.

Current research efforts in database security are neither
adequate for evaluating the security of modern databases,
nor do they account for their advanced features. In more de-
tail, existing research [3], [11], [29], [37] implicitly consid-
ers attackers who use SELECT commands. But the capabil-
ities offered by databases go far beyond SELECT. Users, in
general, can modify the database’s state and security policy,
as well as use features such as triggers, views, and integrity
constraints. Consequently, all proposed research solutions
fail to prevent attacks such as those we present in §2.

In summary, the database vendors have been left to
develop access control mechanisms without guidance from

either the SQL standard or existing research in database
security. It is therefore not surprising that modern databases
are open to abuse.
Contributions. We develop a comprehensive formal frame-
work for the design and analysis of database access control.
We use it to design and verify an access control mechanism
that prevents confidentiality and integrity attacks that defeat
existing mechanisms.

First, we develop an operational semantics for databases
that supports SQL’s core features, as well as triggers, views,
and integrity constraints. Our semantics models both the
security-critical aspects of these features and the database’s
dynamic behaviour at the level needed to capture realistic
attacks. Our semantics is substantially more detailed than
those used in previous works [29], [37], which ignore the
database’s dynamics.

Second, we develop a novel attacker model that, in ad-
dition to SQL’s core features, incorporates advanced fea-
tures such as triggers, views, and integrity constraints. Fur-
thermore, our attacker can infer information based on the
semantics of these features. Note that our attacker model
subsumes the SELECT-only attacker considered in previous
works [29], [37]. We also develop an executable version
of our operational semantics and attacker model using
the Maude term-rewriting framework [12]. The executable
model acts as a reference implementation for our semantics.
Given the complexity of databases and their features, having
an executable version of our models provides a way to
validate them against existing database systems and against
the examples we use in this paper.

Third, we present two security definitions—database
integrity and data confidentiality—that reflect two principal
security requirements for database access control. There is a
natural and intuitive relationship between these definitions
and the types of attacks that we identify. We thus argue
that these definitions provide a strong measure of whether a
given access control mechanism prevents our attacker from
exploiting modern SQL databases.

Finally, using our framework, we build a database access
control mechanism that is provably secure with respect to
our attacker model and security definitions. In contrast to
existing mechanisms, our solution prevents all the attacks
that we report on in §2.

Related Work. Surprisingly, and in contrast to other areas of
information security, there does not exist a well-defined at-
tacker model for database access control. From the literature,
we extracted the SELECT-only attacker model, where the
attacker uses just SELECT commands. A number of access
control mechanisms, such as [3], [7], [8], [29], [37], im-
plicitly consider this attacker model. The boundaries of this
model are blurred and the attacker’s capabilities are unclear.
For instance, only a few works, such as [37], explicitly state
that update commands are not supported, whereas others [3],
[7], [8], [29] ignore what the attacker can learn from update
commands. Works on Inference Control [11], [17], [36] and
Controlled Query Evaluation [10] consider a variation of the
SELECT-only attacker, in which the attacker additionally
has some initial knowledge about the data and can derive
new information from the query’s results through inference
rules. Note that while [36] supports update commands, it
treats them just as a way of increasing data availability,
rather than considering them as a possible attack vector.

Database access control mechanisms can be classified
into two distinct families [29]. Mechanisms in the Truman
model [3], [37] transparently modify query results to restrict
the user’s access to the data authorized by the policy. In
contrast, mechanisms in the Non-Truman model [7], [8],
[29] either accept or reject queries without modifying their
results. Different notions of security have been proposed for
these models [21], [29], [37]. They are, however, based on
SELECT-only attackers and provide no security guarantees
against realistic attackers that can alter the database and the
policy or use advanced SQL features. We refer the reader
to §7 for further comparison with related work.

Organization. In §2 we present attacks that illustrate seri-
ous weaknesses in existing Database Management Systems
(DBMSs). In §3 we introduce background and notation
about queries, views, triggers, and access control. In §4
we formalize our system and attacker models, and in §5
we define the desired security properties. In §6 we present
our access control mechanism, and in §7 we discuss related
work. Finally, we draw conclusions in §8. An extended ver-
sion of this paper, with the system’s operational semantics,
the attacker model, and complete proofs of all results, is
available at [23]. A prototype of our enforcement mecha-
nism and its executable semantics are available at [22].

2. Illustrative Attacks

We demonstrate here how attackers can exploit existing
DBMSs using standard SQL features. We classify these
attacks as either Integrity Attacks or Confidentiality Attacks.
In the former, an attacker makes unauthorized changes to
the database, which stores the data, the policy, the triggers,
and the views. In the latter, an attacker learns sensitive data
by interacting with the system and observing the outcome.
No existing access control mechanism prevents all the at-
tacks we present. Moreover, many related attacks can be
constructed using variants of the ideas presented here. We
manually carried out the attacks against IBM DB2, Ora-

cle Database, PostgreSQL, MySQL, SQL Server, and Fire-
bird. We summarize our findings at the end of this section.

2.1. Integrity Attacks

Our three integrity attacks combine different database
features: INSERT, DELETE, GRANT, and REVOKE com-
mands together with views and triggers. In the first attack,
an attacker creates a trigger, i.e., a procedure automatically
executed by the DBMS in response to user commands, that
will be activated by an unaware user with a higher security
clearance and will perform unauthorized changes to the
database. The attack requires triggers to be executed under
the privileges of the users activating them. Such triggers are
supported by PostgreSQL, SQL Server, and Firebird.

Attack 1. Triggers with activator’s privileges. Consider
a database with two tables P and S and two users u1 and
u2. The attacker is the user u1, whose goal is to delete the
content of S. The policy is that u1 is not authorized1 to alter
S, u1 can create triggers on P , and u2 can read and modify
S and P . The attack is as follows:

1) u1 creates the trigger:

CREATE TRIGGER t ON P AFTER INSERT
DELETE FROM S;

2) u1 waits until u2 inserts a tuple into the table P . The
trigger will then be invoked using u2’s privileges and
S’s content will be deleted. �

An attacker can use similar attacks to execute arbitrary
commands with administrative privileges. Despite the threat
posed by such simple attacks, the existing countermea-
sures [1] are unsatisfactory; they are either too restrictive,
for instance completely disabling triggers in the database,
or too time consuming and error prone, namely manually
checking if “dangerous” triggers have been created.

In our second attack, an attacker escalates his privi-
leges by delegating the read permission for a table without
being authorized to delegate this permission. The attacker
first creates a view over the table and, afterwards, delegates
the access to the view to another user. This attack exploits
DBMSs, such as PostgreSQL, where a user can grant any
read permission over his own views. Note that GRANT and
REVOKE commands are write operations, which target the
database’s internal configuration instead of the tables.

Attack 2. Granting views. Consider a database with a table
S, two users u1 and u2, and the following policy: u1 can
create views and read S (without being able to delegate this
permissions), and u2 cannot read S. The attack is as follows:

1) u1 creates the view: CREATE VIEW v AS SELECT ∗
FROM S.

2) u1 issues the command GRANT SELECT ON v TO u2.
Now, u2 can read S through v. However, u1 is not
authorized to delegate the read permission on S. �

1. As is common in SQL, a user is authorized to execute a command if
and only if the policy assigns him the corresponding permission.

Integrity Attacks Confidentiality Attacks

DBMS Triggers with Granting Revoking Table updates and Triggers with
activator’s privileges views views integrity constraints owner’s privileges

IBM DB2 (v. 10.5) † X X X X
Oracle (v. 11g) † X X X X
PostgreSQL (v. 9.3.5) X X X X X
MySQL (v. 14.14) † X X X X
SQL Server (v. 12.0) X † † X X
Firebird (v. 2.5.2) X X X X X

Figure 1: The X symbol indicates a successful attack, whereas X indicates a failed attack. The † symbol indicates
that the DBMS does not support the features necessary to launch the attack.

This attack exploits several subtleties in the commands’
semantics: (a) users can create views over all tables they can
read, (b) the views are executed under the owner’s privileges,
and (c) view’s owners can grant arbitrary permissions over
their own views. These features give u1 the implicit ability
to delegate the read access over S. As a result, the overall
system’s behaviour does not conform with the given policy.
That is, u1 should not be permitted to delegate the read
access to S or to any view that depends on it. Note that the
commands’ semantics may vary between different DBMSs.

In our third attack, an attacker exploits the failure of ac-
cess control mechanisms to propagate REVOKE commands.

Attack 3. Revoking views. Consider a database with a table
S, three users u1, u2, and u3, and the following policy: u1

can read S and delegate this permission, u2 can create views,
and u3 cannot read S. The attack proceeds as follows:

1) u1 issues the command GRANT SELECT ON S TO u2

WITH GRANT OPTION.
2) u2 creates the view: CREATE VIEW v AS SELECT ∗

FROM S.
3) u2 issues the command GRANT SELECT ON v TO u3.
4) u1 revokes the permission to read S (and to delegate the

permission) from u2: REVOKE SELECT ON S FROM
u2. Now, u3 cannot read v because u2, which is v’s
owner, cannot read S.

5) u1 grants again the permission to read S to u2: GRANT
SELECT ON S TO u2. Now, u3 can again read v but
u2 can no longer delegate the read permission on v. �

This attack succeeds because, in the fourth step, the
REVOKE statement does not remove the GRANT granted by
u2 to u3 to read v. This GRANT only becomes ineffective
because u2 is no longer authorized to read S. However,
after the fifth step, this GRANT becomes effective again,
even though u2 can no longer delegate the read permission
on v. Thus, the policy is left in an inconsistent state.

2.2. Confidentiality Attacks

We now present two attacks that use INSERT and
SELECT commands together with triggers and integrity
constraints. In our fourth attack, an attacker exploits integrity
constraint violations to learn sensitive information. An in-
tegrity constraint is an invariant that must be satisfied for
a database state to be considered valid. Integrity constraint

violations arise when the execution of an SQL command
leads the database from a valid state into an invalid one.

Attack 4. Table updates and integrity constraints.
Consider a database with two tables P and S. Suppose the
primary key of both tables is the user’s identifier. Further-
more, the set of user identifiers in S is contained in the set
of user identifiers in P , i.e., there is a foreign key from S to
P . The attacker is the user u whose goal is to learn whether
Bob is in S. The access control policy is that u can read
P and insert tuples in S. The attacker u can learn whether
Bob is in S as follows:

1) He reads P and learns Bob’s identifier.
2) He issues an INSERT statement in S using Bob’s id.
3) If Bob is already in S, then u gets an error message

about the primary key’s violation. Alternatively, there
is no violation and u learns that Bob is not in S. �

Even though similar attacks have been identified be-
fore [24], [34], existing DBMSs are still vulnerable.

In our fifth attack, an attacker learns sensitive informa-
tion by exploiting the system’s triggers. The trigger in this
attack is executed under the privileges of the trigger’s owner.
Such triggers are supported by IBM DB2, Oracle Database,
PostgreSQL, MySQL, SQL Server, and Firebird.

Attack 5. Triggers with owner’s privileges. Consider a
database with three tables N , P , and T . The attacker is the
user u, who wishes to learn whether v is in T . The policy is
that u is not authorized to read the table T , and he can read
and modify the tables N and P . Moreover, the following
trigger has been defined by the administrator.
CREATE TRIGGER t ON P AFTER INSERT FOR EACH ROW
IF exists(SELECT * FROM T WHERE id = NEW.id)
INSERT INTO N VALUES (NEW.id);

The attack is as follows:
1) u deletes v from N .
2) u issues the command INSERTINTOP VALUES(v).
3) u checks the table N . If it contains v’s id, then v is in

T . Otherwise, v is not in T . �

This attack exploits that the trigger t conditionally mod-
ifies the database. Furthermore, the attacker can activate t,
by inserting tuples in P , and then observe t’s effects, by
reading the table N . He therefore can exploit t’s execution
to learn whether t’s condition holds. We assume here that
the attacker knows the triggers in the system. This is, in

general, a weak assumption as triggers usually describe the
domain-specific rules regulating a system’s behaviour and
users are usually aware of them.

2.3. Discussion

We manually carried out all five attacks against IBM
DB2, Oracle Database, PostgreSQL, MySQL, SQL Server,
and Firebird. Figure 1 summarizes our findings. None of
these systems prevent the confidentiality attacks. They are
however more successful in preventing the integrity attacks.
The most successful is Oracle Database, which prevents two
of the three attacks, while Attack 1 cannot be carried out due
to missing features. IBM DB2, MySQL, and Firebird pre-
vent just one of the three attacks, namely Attack 2. However,
they all fail to prevent Attack 3. Note that Firebird also fails
to prevent Attack 1. In contrast, Attack 1 cannot be carried
out against MySQL and IBM DB2 due to missing features.
SQL Server also fails to prevent Attack 1; however the
remaining two attacks cannot be carried out due to missing
features. PostgreSQL fails to prevent all three attacks.

We argue that the dire state of database access control
mechanisms, as illustrated by these attacks, comes from the
lack of clearly defined security properties that such mecha-
nisms ought to satisfy and the lack of a well-defined attacker
model. We therefore develop a formal attacker model and
precise security properties and we use them to design a
provably secure access control mechanism that prevents all
the above attacks.

3. Database Model

We now formalize databases including features like
views, access control policies, and triggers. Our formaliza-
tion of databases and queries follows [2], and our access
control policies formalize SQL policies.

3.1. Overview

In this paper we consider the following SQL features:
SELECT, INSERT, DELETE, GRANT, REVOKE, CREATE
TRIGGER, CREATE VIEW, and ADD USER commands.

For SELECT commands, rather than using SQL, we use
the relational calculus (RC), i.e., function-free first-order
logic, which has a simple and well-defined semantics [2].
We support GRANT commands with the GRANT OPTION
and REVOKE commands with the CASCADE OPTION,
i.e., when a user revokes a privilege, he also revokes
all the privileges that depend on it. We support INSERT
and DELETE commands that explicitly identify the tuple
to be inserted or deleted, i.e., commands of the form
INSERT INTO table(x1, . . . , xn) VALUES (v1, . . . , vn)
and DELETE FROM table WHERE x1 = v1∧ . . .∧xn = vn,
where x1, . . . , xn are table’s attributes and v1, . . . , vn are
the tuple’s values. More complex INSERT and DELETE
commands, as well as UPDATEs, can be simulated by com-
bining SELECT, INSERT, and DELETE commands.

We support only AFTER triggers on INSERT and
DELETE events, i.e., triggers that are executed in response
to INSERT and DELETE commands. The triggers’ WHEN
conditions are arbitrary boolean queries and their actions
are GRANT, REVOKE, INSERT, or DELETE commands.
Note that DBMSs usually impose severe restrictions on
the WHEN clause, such as it must not contain sub-queries.
However, most DBMSs can express arbitrary conditions
on triggers by combining control flow statements with
SELECT commands inside the trigger’s body. Thus, we
support the class of triggers whose body is of the form
BEGIN IF expr THEN act END, where act is either a
GRANT, REVOKE, INSERT, or DELETE command. Note
that all triggers used in §2 belong to this class.

We support two kinds of integrity constraints: functional
dependencies and inclusion dependencies [2]. They model
the most widely used families of SQL integrity constraints,
namely the UNIQUE, PRIMARY KEY, and FOREIGN KEY
constraints. We also support views with both the owner’s
privileges and the activator’s privileges.

The SQL fragment we support contains the most com-
mon SQL commands for data manipulation and access con-
trol as well as the core commands for creating triggers and
views. The ideas and the techniques presented in this paper
are general and can be extended to the entire SQL standard.

3.2. Databases and Queries

Let R, U , V , and T be mutually disjoint, countably
infinite sets, respectively representing identifiers of relation
schemas, users, views, and triggers.

A database schema D is a pair 〈Σ,dom〉, where Σ
is a first-order signature and dom is a fixed countably
infinite domain. The signature Σ consists of a set of relation
schemas R ∈ R, also called tables, with arity |R| and sort
sort(R). A state s of D is a finite Σ-structure over dom.
We denote by ΩD the set of all states. Given a table R ∈ D,
s(R) denotes the set of tuples that belong to R in s.

A query q over a schema D is of the form {x |φ},
where x is a sequence of variables, φ is a relational calculus
formula over D, and φ’s free variables are those in x. A
boolean query is a query { |φ}, also written as φ, where
φ is a sentence. The result of executing a query q on a
state s, denoted by [q]s, is a boolean value in {>,⊥},
if q is a boolean query, or a set of tuples otherwise. We
denote by RC (respectively RC bool) the set of all relational
calculus queries (respectively sentences). We consider only
domain-independent queries as is standard, and we employ
the standard relational calculus semantics [2].

Let D = 〈Σ,dom〉 be a schema, s be a state in ΩD,
R be a table in D, and t be a tuple in dom|R|. The result
of inserting (respectively deleting) t in R in the state s is
the state s′, denoted by s[R ⊕ t] (respectively s[R 	 t]),
where s′(T) = s(T) for all T ∈ Σ such that T 6= R, and
s′(R) = s(R) ∪ {t} (respectively s′(R) = s(R) \ {t}).

An integrity constraint over D is a relational calculus
sentence γ over D. Given a state s, we say that s satisfies
the constraint γ iff [γ]s = >. Given a set of constraints Γ,

ΩΓ
D denotes the set of all states satisfying the constraints

in Γ, i.e., ΩΓ
D = {s ∈ ΩD |

∧
γ∈Γ[γ]s = >}. We consider

two types of integrity constraints: functional dependencies,
which are sentences of the form ∀x, y, y′, z, z′. ((R(x, y, z)∧
R(x, y′, z′))⇒ y = y′), and inclusion dependencies, which
are sentence of the form ∀x, y. (R(x, y)⇒ ∃z. S(x, z)).

3.3. Views

Let D be a schema. A view V over D is a tuple 〈id , o, q,
m〉, where id ∈ V is the view identifier, o ∈ U is the view’s
owner, q is the non-boolean query over D defining the view,
and m ∈ {A,O} is the security mode, where A stands for
activator’s privileges and O stands for owner’s privileges.
Note that the query q may refer to other views. We assume,
however, that views have no cyclic dependencies between
them. We denote by VIEWD the set of all views over
D. The materialization of a view 〈V, o, q,m〉 in a state s,
denoted by s(V), is [q]s. We extend the relational calculus
in the standard way to work with views [2].

3.4. Access Control Policies

We now formalize the SQL access control model. We
first formalize five privileges. Let D be a database schema.
A SELECT privilege over D is a tuple 〈SELECT, R〉, where
R is a relation schema in D or a view over D. A CREATE
VIEW privilege over D is a tuple 〈CREATE VIEW〉.
An INSERT privilege over D is a tuple 〈INSERT, R〉,
a DELETE privilege over D is a tuple 〈DELETE, R〉,
and a CREATE TRIGGER privilege over D is a tuple
〈CREATE TRIGGER, R〉, where R is a relation schema in
D. We denote by PRIVD the set of privileges over D.

Following SQL, we use GRANT commands to assign
privileges to users. Let U ⊆ U be a set of users and D be a
database schema. We now define (U,D)-grants and (U,D)-
revokes. There are two types of (U,D)-grants. A (U,D)-
simple grant is a tuple 〈⊕, u, p, u′〉, where u ∈ U is the user
receiving the privilege p ∈ PRIVD and u′ ∈ U is the user
granting this privilege. A (U,D)-grant with grant option is
a tuple 〈⊕∗, u, p, u′〉, where u, p, and u′ are as before. A
(U,D)-revoke is a tuple 〈	, u, p, u′〉, where u ∈ U is the
user from which the privilege p ∈ PRIVD will be revoked
and u′ ∈ U is the user revoking this privilege. We denote
by Ωsec

U,D the set of all (U,D)-grants and (U,D)-revokes.
A grant 〈⊕, u, p, u′〉 models the command GRANT p TO u
issued by u′, a grant with grant option 〈⊕∗, u, p, u′〉 models
the command GRANT p TO u WITH GRANT OPTION is-
sued by u′, and a revoke 〈	, u, p, u′〉 models the command
REVOKE p FROM u CASCADE issued by u′.

Finally, we define a (U,D)-access control policy S as
a finite set of (U,D)-grants. We denote by SU,D the set of
all (U,D)-policies.

Example 3.1. Consider the policy described in
Attack 5. The database D has three tables: N , P ,
and T . The set U is {u, admin} and the policy S
contains the following grants: 〈⊕,u,〈SELECT,P〉,admin〉,

Access Control System
Users Database System

Figure 2: System model.

〈⊕,u,〈INSERT,P〉,admin〉, 〈⊕,u,〈DELETE,P〉,admin〉,
〈⊕,u,〈SELECT,N 〉,admin〉, 〈⊕,u,〈INSERT,N 〉,admin〉,
and 〈⊕,u,〈DELETE,N 〉,admin〉. �

3.5. Triggers

Let D be a database schema. A trigger over D is a
tuple 〈id , u, e, R, φ, a,m〉, where id ∈ T is the trigger
identifier, u ∈ U is the trigger’s owner, e ∈ {INS ,DEL}
is the trigger event (where INS stands for INSERT and
DEL stands for DELETE), R ∈ D is a relation schema,
the trigger condition φ is a relational calculus formula such
that free(φ) ⊆ {x1, . . . , x|R|}, and the trigger action a is
one of: (1) 〈INSERT, R′, t〉, where R′ ∈ D and t is a |R′|-
tuple of values in dom and variables in {x1, . . . , x|R|},
(2) 〈DELETE, R′, t〉, where R′ and t are as before, or (3)
〈op, u, p〉, where op ∈ {⊕,⊕∗,	}, u ∈ U , and p is a
privilege over D. Finally, m ∈ {A,O} is the security mode,
where A stands for activator’s privileges and O stands for
owner’s privileges. We denote by T RIGGERD the set of
all triggers over D.

We assume that any command a is executed atom-
ically together with all the triggers activated by a.
We also assume that triggers do not recursively acti-
vate other triggers. Hence all executions terminate. We
enforce this condition syntactically at the trigger’s cre-
ation time; see [23] for additional details. The trigger
〈t , admin, INS ,P ,T (x1), 〈INSERT,N , x1〉, O〉 models the
trigger in Attack 5. Here, x1 is bound, at run-time, to the
value inserted in P by the trigger’s invoker.

4. System and Attacker Model

We next present our system and attacker models. Exe-
cutable versions of these models, built in the Maude frame-
work [12], are available at [22]. The models can be used
for simulating the execution of our operational semantics,
as well as computing the information that an attacker can
infer from the system’s behaviour. We have executed and
validated all of our examples using these models.

4.1. Overview

In our system model, shown in Figure 2, users interact
with two components: a database system and an access
control system. The access control system contains both a
policy enforcement point and a policy decision point. We
assume that all the communication between the users and
the components is over secure channels.

Database System. The database system (or database for
short) manages the data. The database’s state is represented
by a mapping from relation schemas to sets of tuples. We
assume that all database operations are atomic.
Users. Users interact with the database where each com-
mand is checked by the access control system. Each
user has a unique account through which he can issue
SELECT, INSERT, DELETE, GRANT, REVOKE, CREATE
TRIGGER, and CREATE VIEW commands.

The system administrator is a distinguished user respon-
sible for defining the database schema and the access control
policy. In addition to issuing queries and commands, he can
create user accounts and assign them to users. The admin-
istrator interacts with the access control system through a
special account admin .

The attacker is a user, other than the administrator, with
an assigned user account who attempts to violate the access
control policy. Namely, his goals are: (1) to read or infer
data from the database for which he lacks the necessary
SELECT privileges, and (2) to alter the system state in
unauthorized ways, e.g., changing data in relations for which
he lacks the necessary INSERT and DELETE privileges.
The attacker can issue any command available to users and
he sees the results of his commands. The attacker’s inference
capabilities are specified using deduction rules.
Access Control System. The access control system protects
the confidentiality and integrity of the data in the database. It
is configured with an access control policy S, it intercepts all
commands issued by the users, and it prevents the execution
of commands that are not authorized by S. When a user
u issues a command c, the access control system decides
whether u is authorized to execute c. If c complies with
the policy, then the access control system forwards the
command to the DBMS, which executes c and returns its
result to u. Otherwise, it raises a security exception and
rejects c. Note that this corresponds to the Non-Truman
model [29]; see related work for more details.

The access control system also logs all issued com-
mands. When evaluating a command, the access control
system can access the database’s current state and the log.

4.2. System Model

We formalize our system model as a labelled transition
system (LTS). First, we define a system configuration, which
describes the database schema and the integrity constraints,
and the user actions. Afterwards, we define the system’s
state, which represents a snapshot of the system that contains
the database’s state, the identifiers of the users interacting
with the system, the access control policy, and the current
triggers and views in the system. Finally, we formalize the
system’s behaviour as a small step operational semantics,
including all features necessary to reason about security,
even in the presence of attacks like those illustrated in §2.

A system configuration is a tuple 〈D,Γ〉 such that D is
a schema and Γ is a finite set of integrity constraints over
D. Let M = 〈D,Γ〉 be a system configuration and u ∈ U
be a user. A (D,u)-action is one of the following tuples:

• 〈u, ADD USER, u′〉, where u = admin and u′ ∈ U \
{admin},

• 〈u, SELECT, q〉, where q is a boolean query2 over D,
• 〈u, INSERT, R, t〉, where R ∈ D and t ∈ dom|R|,
• 〈u, DELETE, R, t〉, where R and t are as above,
• 〈op, u′, p, u〉, where 〈op, u′, p, u〉 ∈ Ωsec

D,U , or
• 〈u, CREATE, o〉, where o ∈ T RIGGERD ∪ VIEWD.

We denote by AD,u the set of all (D,u)-actions and by
AD,U , for some U ⊆ U , the set

⋃
u∈U AD,u.

An M -context describes the system’s history, the sched-
uled triggers that must be executed, and how to modify the
system’s state in case a roll-back occurs. We denote by CM
the set of all M -contexts. We assume that CM contains
a distinguished element ε representing the empty context,
which is the context in which the system starts.

An M -state is a tuple 〈db, U, sec, T, V, c〉 such that db ∈
ΩΓ
D is a database state, U ⊂ U is a finite set of users such

that admin ∈ U , sec ∈ SU,D is a security policy, T is
a finite set of triggers over D owned by users in U , V
is a finite set of views over D owned by users in U , and
c ∈ CM is an M -context. We denote by ΩM the set of all M -
states. An M -state 〈db, U, sec, T, V, c〉 is initial iff (a) sec
contains only grants issued by admin , (b) T (respectively V)
contains only triggers (respectively views) owned by admin ,
and (c) c = ε. We denote by IM the set of all initial states.

An M -Policy Decision Point (M -PDP) is a total function
f : ΩM×AD,U → {>,⊥} that maps each state s and action
a to an access control decision represented by a boolean
value, where > stands for permit and ⊥ stands for deny.
An extended configuration is a tuple 〈M,f〉, where M is a
system configuration and f is an M -PDP.

We now define the LTS representing the system model.

Definition 4.1. Let P = 〈M,f〉 be an extended configura-
tion, where M = 〈D,Γ〉 and f is an M -PDP. The P -LTS is
the labelled transition system 〈S,A,→f , I〉 where S = ΩM
is the set of states, A = AD,U ∪ T RIGGERD is the set
of actions, →f ⊆ S × A× S is the transition relation, and
I = IM is the set of initial states. �

Let P = 〈M,f〉 be an extended configuration. A run r
of a P -LTS L is a finite alternating sequence of states and
actions, which starts with an initial state s, ends in some
state s′, and respects the transition relation →f . We denote
by traces(L) the set of all L’s runs. Given a run r, |r|
denotes the number of states in r, last(r) denotes r’s last
state, and ri, where 1 ≤ i ≤ |r|, denotes the run obtained
by truncating r at the i-th state.

The relation→f formalizes the system’s small step oper-
ational semantics. Figure 3 shows three rules describing the
successful execution of SELECT and INSERT commands,
as well as triggers. In the rules, we represent context changes
using the update function upd , which takes as input an M -
state and an action a ∈ AD,U ∪ T RIGGERD, and returns

2. Without loss of generality, we focus only on boolean queries [2]. We
can support non-boolean queries as follows. Given a database state s and
a query q := {x | φ}, if the access control mechanism authorizes the
boolean query

∧
t∈[q]s φ[x 7→ t] ∧ (∀x. φ ⇒

∨
t∈[q]s x = t), then we

return q’s result, and otherwise we reject q as unauthorized.

s = 〈db, sec, U, T, V, c〉 f (s, 〈u, SELECT, q〉) = > trg(s) = ε
s′ = 〈db, sec, U, T, V, c′〉 c′ = upd(s, 〈u, SELECT, q〉)

s
〈u,SELECT,q〉−−−−−−−→f s

′

SELECT
Success

s = 〈db, sec, U, T, V, c〉 f (s, 〈u, INSERT, R, t〉) = >
s′ = 〈db[R⊕ t], sec, U, T, V, c′〉 db[R⊕ t] ∈ ΩΓ

D
c′ = upd(s, 〈u, INSERT, R, t〉) trg(s) = ε

s
〈u,INSERT,R,t〉−−−−−−−−−→f s

′

INSERT
Success

s = 〈db, sec, U, T, V, c〉 v = tpl(s)
u = user(m, owner , invoker(s))

trg(s) = 〈id , owner , ev , R′, φ, st ,m〉
f (s, 〈u, SELECT, φ[x 7→ v]〉) = > [φ[x 7→ v]]db = >

〈u, INSERT, R, v′〉 = act(st , u, v)
f (s, 〈u, INSERT, R, v′〉) = > c′ = upd(s, trg(s))
s′ = 〈db[R⊕ v′], sec, U, T, V, c′〉 db[R⊕ v′] ∈ ΩΓ

D

s
trg(s)−−−−→f s

′

Trigger
INSERT
Success

Figure 3: Examples of system model’s rules.

the updated context. This function, for instance, updates
the system’s history stored in the context. The function trg
takes as input a system state s and returns the first trigger
in the list of scheduled triggers stored in s’s context. If
there are no triggers to be executed, then trg(s) = ε. The
rule SELECT Success models the system’s behaviour when
the user u issues a SELECT query q that is authorized
by the PDP f . The only component of the M -state s that
changes is the context c. Namely, c′ is obtained from c by
updating the history and storing q’s result. Similarly, the rule
INSERT Success describes how the system behaves after a
successful INSERT command, i.e., one that neither violates
the integrity constraints nor causes security exceptions. The
database state db is updated by adding the tuple t to R
and the context is updated from c to c′ by (a) storing the
action’s result, (b) storing the triggers that must be executed
in response to the INSERT event, and (c) keeping track of
the previous state in case a roll-back is needed.

The Trigger INSERT Success rule describes how the
system executes a trigger whose action is an INSERT. The
system extracts from the context the trigger t to be executed,
i.e., t = trg(s). It determines, using the function user , the
user u under whose privileges the trigger t is executed,
which is, depending on t’s security mode, either the invoker
invoker(s) or t’s owner. It then checks that u is authorized
to execute the SELECT statement associated with t’s WHEN
condition, and that this condition is satisfied. Afterwards,
it computes the actual action using the function act , which
instantiates the free variables in t’s definition with the values
in the tuple tpl(s), i.e., the tuple associated with the action
that fired t. Finally, the system updates the database state
db by adding the tuple v′ to R and the context by storing
the results of t’s execution and removing t from the list of
scheduled triggers.

In [23], we give the complete formalization of our la-
belled transition system. This includes formalizing contexts
and all the rules defining the transition relation →f . Our
operational semantics can be tailored to model the behaviour
of specific DBMSs. Thus, using our executable model,
available at [22], it is possible to validate our operational
semantics against different existing DBMSs.

4.3. Attacker Model

We model attackers that interact with the system through
SQL commands and infer information from the system’s
behaviour by exploiting triggers, views, and integrity con-

straints. We argue that database access control mechanisms
should be secure with respect to such strong attackers, as
this reflects how (malicious) users may interact with modern
databases. Furthermore, any mechanism secure against such
strong attackers is also secure against weaker attackers.

Any user other than the administrator can be an attacker,
and we assume that users do not collude to subvert the
system. Note that our attacker model, the security properties
in §5, and the mechanism we develop in §6, can easily be
extended to support colluding users. We also assume that an
attacker can issue any command available to the system’s
users, and he knows the system’s operational semantics, the
database schema, and the integrity constraints.

We assume that an attacker has access to the system’s
security policy, the set of users, and the definitions of the
triggers and views in the system’s state. In more detail,
given an M -state 〈db, U, sec, T, V, c〉, an attacker can access
U , sec, T , and V . Users interacting with existing DBMSs
typically have access to some, although not all, of this
information. For instance, in PostgreSQL a user can read all
the information about the triggers defined on the tables for
which he has some non-SELECT privileges. Note that the
more information an attacker has, the more attacks he can
launch. Finally, we assume that an attacker knows whether
any two of his commands c and c′ have been executed
consecutively by the system, i.e., if there are commands
executed by other users occurring between c and c′. The
attacker’s knowledge about the sequential execution of his
commands is needed to soundly propagate his knowledge
about the system’s state between his commands. Since the
mechanism we develop in §6 is secure with respect to this
attacker, it is also secure with respect to weaker attackers
who have less information or cannot detect whether their
commands have been executed consecutively.

An attacker model describes what information an at-
tacker knows, how he interacts with the system, and what
he learns about the system’s data by observing the system’s
behaviour. Since every user is a potential attacker, for each
user u ∈ U we define an attacker model specifying u’s infer-
ence capabilities. To represent u’s knowledge, we introduce
judgments. A judgment is a four-tuple 〈r, i, u, φ〉, written
r, i `u φ, denoting that from the run r, which represents
the system’s behaviour, the user u can infer that φ holds
in the i-th state of r. An attacker model for u is thus a
set of judgments associating to each position of each run,
the sentences that u can infer from the system’s behaviour.
The idea of representing the attacker’s knowledge using

ri = ri−1 · 〈u, DELETE, R, t〉 · s 1 < i ≤ |r|
s ∈ ΩM secEx (s) = ⊥ Ex (s) = ∅

r, i `u ¬R(t)

DELETE
Success

ri = ri−1 · 〈u, SELECT, φ〉 · s 1 < i ≤ |r| s ∈ ΩM
secEx (s) = ⊥ Ex (s) = ∅ res(s) = >

r, i `u φ
SELECT
Success

ri+1 = ri · t · s invoker(last(ri)) = u s ∈ ΩM 1 ≤ i < |r|
secEx (s) = ⊥ Ex (s) = ∅ r, i `u ¬ψ r, i+ 1 `u ψ

t = 〈id , ow , ev , R′, φ(x), 〈INSERT, R, t〉,m〉
r, i `u φ[x 7→ tpl(last(ri))]

Learn
INSERT
Backward

ri+1 = ri · 〈u, SELECT, φ〉 · s
r, i+ 1 `u ψ s ∈ ΩM 1 ≤ i < |r|

r, i `u ψ

Propagate
Backward
SELECT

r, i− 1 `u φ ri = ri−1 · 〈u, op, R, t〉 · s s ∈ ΩM 1 < i ≤ |r|
secEx (s) = ⊥ Ex (s) = ∅ revise(ri−1, φ, ri) = > op ∈ {INSERT, DELETE}

r, i `u φ
Propagate Forward

Update Success
Figure 4: Example of attacker inference rules, where r, i `u φ denotes that this judgment holds in AT Ku.

sentences φ is inspired by existing formalisms for Inference
Control [11], [17] and Controlled Query Evaluation [10].

Definition 4.2. Let P be an extended configuration, L be
the P -LTS, and u ∈ U be a user. A (P, u)-judgment is a
tuple 〈r, i, u, φ〉, written r, i `u φ, where r ∈ traces(L),
1 ≤ i ≤ |r|, and φ ∈ RC bool . A (P, u)-attacker model is a
set of (P, u)-judgments. A (P, u)-judgment r, i `u φ holds
in a (P, u)-attacker model A iff r, i `u φ ∈ A. �

For each user u ∈ U , we now define the (P, u)-attacker
model AT Ku that we use in the rest of the paper. We
formalize this model using a set of inference rules, where
AT Ku is the smallest set of judgments satisfying the in-
ference rules. Figure 4 shows five representative rules. The
complete formalization of all rules is given in [23]. In the
following, when we say that a judgment r, i `u φ holds, we
always mean with respect to the attacker model AT Ku.

Note that AT Ku is sound with respect to the RC se-
mantics, i.e., if r, i `u φ holds, then the formula φ holds in
the i-th state of r. Intuitively, AT Ku models how u infers
information from the system’s behaviour, namely (a) how
u learns information from his commands and their results,
(b) how u learns information from triggers, their execution,
their interleavings, and their side effects, (c) how u propa-
gates his knowledge along a run, and (d) how u learns infor-
mation from exceptions caused by either integrity constraint
violations or security violations. This model is substantially
more powerful than the SELECT-only attacker model.

The rules DELETE Success and SELECT Success de-
scribe how the user u infers information from his successful
actions, i.e., those actions that generate neither security ex-
ceptions nor integrity violations. In the rules, secEx (s) = ⊥
denotes that there were no security exceptions caused by the
action leading to s, and Ex (s) = ∅ denotes that the action
leading to s has not violated the integrity constraints. After
a successful DELETE, u knows that the deleted tuple is no
longer in the database, and after a successful SELECT he
learns the query’s result, denoted by res(s).

The rules Propagate Backward SELECT and Propagate
Forward Update Success describe how u propagates infor-
mation along the run. Propagate Backward SELECT states
that if the user u knows that φ holds after a SELECT

command, then he knows that φ also holds just before
the SELECT command because SELECT commands do not
modify the database state. Propagate Forward Update Suc-
cess states that if u knows that φ holds before a successful
INSERT or DELETE command and he can determine that
the command’s execution does not influence φ’s truth value,
denoted by revise(ri−1, φ, ri) = >, then he also knows that
φ holds after the command.

Finally, the rule Learn INSERT Backward models u’s
reasoning when he activates a trigger that successfully in-
serts a tuple in the database. If u knows that immediately
before the trigger the formula ψ does not hold and immedi-
ately after the trigger the formula ψ holds, then the trigger’s
execution is the cause of the database state’s change. There-
fore, u can infer that the trigger’s condition φ holds just
before the trigger’s execution. Note that invoker(s) denotes
the user who fired the trigger that is executed in the state s,
whereas tpl(s) denotes the tuple associated with the action
that fired the trigger that is executed in the state s.

Example 4.1. Let the schema, the set of users U , and
the policy S be as in Example 3.1. The database state
db is db(N) = {v}, db(P) = ∅, and db(T) = {v}.
The only trigger in the system is t = 〈id , admin, INS ,
P ,T (x1), 〈INSERT,N , x1〉, O〉. The run r is as follows:

1) u deletes v from N .
2) u inserts v in P . This activates the trigger t, which

inserts v in N .
3) u issues the SELECT query N(v).

We used Maude to generate the following run, which
illustrates how the system’s state changes. Note that there
are no exceptions during the run.

〈db, U, S, {t}, ∅, c1〉 〈db[N 	 v], U, S, {t}, ∅, c2〉

〈db[P ⊕ v,N 	 v], U, S, {t}, ∅, c3〉〈db[P ⊕ v], U, S, {t}, ∅, c4〉

〈db[P ⊕ v], U, S, {t}, ∅, c5〉

〈u, DELETE, N, v〉

〈u, INSERT,P , v〉
t

〈u, SELECT, N(v)〉

Figure 5 models u’s reasoning in Attack 5. The user
u first applies the SELECT Success rule to derive r, 5 `u
N (v), i.e., he learns the query’s result. By applying the rule
Propagate Backward SELECT to r, 5 `u N (v), he obtains
r, 4 `u N (v), i.e., he learns that N (v) holds before the

r, 2 `u ¬N (v)
DELETE Success

r, 3 `u ¬N (v)

Propagate Forward
Update Success

r, 5 `u N (v)
SELECT Success

r, 4 `u N (v)
Propagate Backward SELECT

r, 3 `u T (v)
Learn INSERT Backward

Figure 5: Template Derivation of Attack 5 (contains just selected subgoals)

SELECT query. Similarly, he applies the rule DELETE Suc-
cess to derive r, 2 `u ¬N (v), and he obtains r, 3 `u ¬N (v)
by applying the Propagate Forward Update Success rule.
Finally, by applying the rule Learn INSERT Backward to
r, 3 `u ¬N (v) and r, 4 `u N (v), he learns the value of
the trigger’s WHEN condition r, 3 `u T (v). Since the user u
should not be able to learn information about T , the attack
violates the intended confidentiality guarantees. We used our
executable attacker model [22] to derive the judgments. �

5. Security Properties

Here we define two security properties: database in-
tegrity and data confidentiality. These properties capture
the two essential aspects of database security. Database
integrity states that all actions modifying the system’s state
are authorized by the system’s policy. In contrast, data
confidentiality states that all information that an attacker can
learn by observing the system’s behaviour is authorized.

These two properties formalize security guarantees with
respect to the two different classes of attacks previously
identified. An access control mechanism providing database
integrity prevents non-authorized changes to the system’s
state and, thereby, prevents integrity attacks. Similarly, by
preventing the leakage of sensitive data, a mechanism pro-
viding data confidentiality prevents confidentiality attacks.

5.1. Database Integrity

Database integrity requires a formalization of authorized
actions. We therefore define the relation auth between
states and actions, modelling which actions are autho-
rized in a given state. Let P = 〈M,f〉 be an extended
configuration, where M = 〈D,Γ〉 and f is an M -PDP.
The relation auth⊆ ΩM × (AD,U ∪ T RIGGERD) is de-
fined by a set of rules given in [23]. Figure 6 shows three
representative rules. The GRANT rule says that the owner o
of a view v with owner’s privileges is authorized to delegate
the SELECT privilege over v to a user u in the state s, if
o has the SELECT privilege with grant option over a set
of tables and views that determine v’s materialization [28],
denoted by hasAccess(s, v, o,⊕∗). The TRIGGER rule says
that the execution of an enabled trigger, i.e., one whose
WHEN condition is satisfied, with the activator’s privileges
is authorized if both the invoker and the trigger’s owner
are authorized to execute the trigger’s action according to
 auth . Note that the act function instantiates the action
given in the trigger’s definition to a concrete action by
identifying the user performing the action and replacing the
free variables with values from dom. Finally, the REVOKE

s = 〈db, U, sec, T, V, c〉 u, o ∈ U op ∈ {⊕,⊕∗}
priv = 〈SELECT, v〉 v = 〈id , o, q, O〉 v ∈ V

hasAccess(s, v, o,⊕∗)
s auth 〈op, u, priv , o〉

GRANT

s = 〈db, U, sec, T, V, c〉 t = 〈id , ow , ev , R, φ, st , A〉
[φ[x 7→ tpl(s)]]db = > s auth act(st , ow , tpl(s))
s auth act(st , invoker(s), tpl(s)) t ∈ T

s auth t
TRIGGER

s = 〈db, U, sec, T, V, c〉 s′ = 〈db, U, sec′, T, V, c〉
s′ = apply(〈	, u, p, u′〉, s) ∀g ∈ sec′. s′ auth g

s auth 〈	, u, p, u′〉
REVOKE

Figure 6: Examples of auth rules.

rule says that a REVOKE statement is authorized if the
resulting state, obtained using the function apply , has a
consistent policy, namely one in which all the GRANTs are
authorized by auth .

We now define database integrity. Intuitively, a PDP
provides database integrity iff all the actions it authorizes are
explicitly authorized by the policy, i.e., they are authorized
by auth . This notion comes directly from the SQL stan-
dard, and it is reflected in existing enforcement mechanisms.
Recall that, given a state s, secEx (s) = ⊥ denotes that there
were no security exceptions caused by the action or trigger
leading to s.

Definition 5.1. Let P = 〈M,f〉 be an extended config-
uration, where M = 〈D,Γ〉 and f is an M -PDP, and
let L be the P -LTS. We say that f provides database
integrity with respect to P iff for all reachable states
s, s′ ∈ ΩM , if s′ is reachable in one step from s by an
action a ∈ AD,U ∪ T RIGGERD and secEx (s′) = ⊥, then
s auth a. �

Example 5.1. We consider a run corresponding to
Attack 1, which illustrates a violation of database integrity.
The database db is such that db(P) = ∅ and db(S) = {z},
the policy sec is {〈⊕,u1,〈CREATE TRIGGER,P 〉,admin〉,
〈⊕,u2,〈INSERT,P 〉,admin〉,〈⊕,u2,〈DELETE,S〉,admin〉,
〈⊕,u2,〈SELECT,P 〉,admin〉,〈⊕,u2,〈SELECT,S〉,admin〉},
and the set U is {u1, u2, admin}. The run r is as follows:

1) The user u1 creates the trigger t = 〈id , u1, INS , P,>,
〈DELETE, S, z〉, A〉.

2) The user u2 inserts the value v in P . This activates the
trigger t and deletes the content of S, i.e., the value z.

We used Maude to generate the following run,
which illustrates how the system’s state changes.
Note that there are no exceptions during the run.

〈db, U, sec, ∅, ∅, c1〉 〈db, U, sec, {t}, ∅, c2〉

〈db[P ⊕ v], U, sec, {t}, ∅, c3〉〈db[P ⊕ v, S 	 z], U, sec, {t}, ∅, c4〉

〈u1, CREATE, t〉

〈u2, INSERT, P, v〉

t

Access control mechanisms that do not restrict the exe-
cution of triggers with activator’s privileges violate database
integrity because they do not throw security exceptions when
〈db[P ⊕ v], U, sec, {t}, ∅, c3〉 6 auth t. �

5.2. Data Confidentiality

To model data confidentiality, we first introduce the
concept of indistinguishability of runs, which formalizes
the desired confidentiality guarantees by specifying whether
users can distinguish between different runs based on their
observations. Formally, a P -indistinguishability relation is
an equivalence relation over traces(L), where P is an ex-
tended configuration and L is the P -LTS. Indistinguishable
runs, intuitively, should disclose the same information.

We now define the concept of a secure judgment, which
is a judgment that does not leak sensitive information or,
equivalently, one that cannot be used to differentiate between
indistinguishable runs.

Definition 5.2. Let P be an extended configuration, L be
the P -LTS, and ∼= be a P -indistinguishability relation. A
judgment r, i `u φ is secure with respect to P and∼=, written
secureP,∼=(r, i `u φ), iff for all r′ ∈ traces(L) such that
ri ∼= r′, it holds that [φ]db = [φ]db

′
, where last(ri) =

〈db, U,S , T, V, c〉 and last(r′) = 〈db′, U ′,S ′, T ′, V ′, c′〉. �

We are now ready to define data confidentiality. Intu-
itively, an access control mechanism provides data confiden-
tiality iff all judgments that an attacker can derive are secure.

Definition 5.3. Let P = 〈M,f〉 be an extended configu-
ration, L be the P -LTS, u ∈ U be a user, A be a (P, u)-
attacker model, and ∼= be a P -indistinguishability relation.
We say that f provides data confidentiality with respect to
P , u, A, and ∼= iff secureP,∼=(r, i `u φ) for all judgments
r, i `u φ that hold in A. �

We now define the indistinguishability relation that we
use in the rest of the paper, which captures what each
user can observe (as stated in §4.3) and the effects of the
system’s access control policy. Let P = 〈〈D,Γ〉, f〉 be an
extended configuration, L be the P -LTS, and u be a user
in U . Given a run r ∈ traces(L), the user u is aware only
of his actions and not of the actions of the other users in
r. This is represented by the u-projection of r, which is
obtained by masking all sequences of actions that are not
issued by u using a distinguished symbol ∗. Specifically,
the u-projection of r is a sequence of states in ΩM and
actions in AD,u∪T RIGGERD ∪{∗} that is obtained from
r by (1) replacing each action not issued by u with ∗,
(2) replacing each trigger whose invoker is not u with ∗,
and (3) replacing all non-empty sequences of ∗-transitions
with a single ∗-transition. For each user u ∈ U , we define
the P -indistinguishability relation ∼=P,u, which is formally

N {v}
P ∅
T {v}

N ∅
P ∅
T {v}

N ∅
P {v}
T {v}

N {v}
P {v}
T {v}

N {v}
P {v}
T {v}

r(db1)

N {v}
P ∅
T {j, v}

N ∅
P ∅
T {j, v}

N ∅
P {v}
T {j, v}

N {v}
P {v}
T {j, v}

N {v}
P {v}
T {j, v}

r(db2)

N {v}
P ∅
T ∅

N ∅
P ∅
T ∅

N ∅
P {v}
T ∅

N ∅
P {v}
T ∅

N ∅
P {v}
T ∅

r(db3)

Figure 7: The runs r(db1) and r(db2) are indistinguish-
able, whereas r(db1) and r(db3) are not.

defined in [23]. Intuitively, two runs r and r′ are ∼=P,u-
indistinguishable, denoted r ∼=P,u r′, iff (1) the labels of
the u-projections of r and r′ are the same, (2) u executes
the same actions a1, . . . , an in r and r′, in the same order,
and with the same results, and (3) before each action ai,
where 1 ≤ i ≤ n, as well as in the last states of r and r′,
the views, the triggers, the users, and the data disclosed by
the policy are the same in r and r′.

We remark that there is a close relation between ∼=P,u

and state-based indistinguishability [21], [29], [37]. For any
two ∼=P,u-indistinguishable runs r and r′, the database states
that precede all actions issued by u as well as the last states
in r and r′ are pairwise indistinguishable under existing
state-based notions [21], [29], [37].

Example 5.2 illustrates our indistinguishability notion.

Example 5.2. Let the schema, the set of users, the policy,
and the triggers be as in Example 4.1. Consider the follow-
ing run r(db), parametrized by the initial database state db:

1) u deletes v from N .
2) u inserts v in P . If v is in T , this activates the trigger

t, which, in turn, inserts v in N .
3) u issues the SELECT query N(v).

Let db1, db2, and db3 be three database states such that
db1(T) = {v}, db2(T) = {j, v}, and db3(T) = ∅, whereas
dbi(N) = {v} and dbi(P) = ∅, for 1 ≤ i ≤ 3. Note that
r(db1) is the run used in Example 4.1. Figure 7 depicts
how the database’s state changes during the runs r(dbi), for
1 ≤ i ≤ 3. Gray indicates those tables that the user u cannot
read. The runs r(db1) and r(db2) are indistinguishable for
the user u. The only difference between them is the content
of the table T , which u cannot read. In contrast, u can
distinguish between r(db1) and r(db3) because the trigger
has been executed in the former and not in the latter.

Indistinguishability may also depend on the actions of
the other users. Consider the runs r′ and r′′ obtained by
extending r(db1) respectively with one and two SELECT
queries issued by the administrator just after u’s query. The
user u can distinguish between r(db1) and r′ because he
knows that other users interacted with the system in r′ but
not in r(db1), i.e., the u-projections have different labels.
In contrast, the runs r′ and r′′ are indistinguishable for u
because he only knows that, after his own SELECT, other
users interacted with the system, i.e., the u-projections have
the same labels. However, he does not know the number of

commands, the commands themselves, or their results. �

Example 5.3 shows that existing PDPs leak sensitive in-
formation and therefore do not provide data confidentiality.

Example 5.3. In Example 4.1, we showed how the user u
derives r, 3 `u T (v). The judgment is not secure because
there is a run indistinguishable from r3, i.e., the run r3(db3)
in Example 5.2, in which T (v) does not hold. �

Example 5.4 shows how views may leak information
about the underlying tables. Even though this leakage might
be considered legitimate, there is no way in our setting to
distinguish between intended and unintended leakages. If
this is desired, data confidentiality can be extended with the
concept of declassification [5], [6].

Example 5.4. Consider a database with two tables T and
Z and a view V = 〈v , admin, {x |T (x) ∧ Z(x)}, O〉.
The set U is {u, admin} and the policy S is
{〈⊕, u, 〈SELECT, T 〉, admin〉, 〈⊕, u, 〈SELECT,V 〉, admin〉,
〈⊕, u, 〈INSERT, T 〉, admin〉}. Consider the following run
r, parametrized by the initial database state db, where u
first inserts 27 into T and afterwards issues the SELECT
query V (27). We assume there are no exceptions in r.

〈db, U, S, ∅, {V }, c1〉 〈db[T ⊕ 27], U, S, ∅, {V }, c2〉

〈db[T ⊕ 27], U, S, ∅, {V }, c3〉

〈u, INSERT, T, 27〉

〈u, SELECT, V (27)〉

We used Maude to generate the runs r(d) and r(d′) with
the initial database states d and d′ such that d(T) = d(Z) =
d′(T) = ∅ and d′(Z) = {27}. The runs r1(d) and r1(d′)
are indistinguishable for u because they differ only in the
content of Z, which u cannot read. After the INSERT, u
can distinguish between r2(d) and r2(d′) by reading V .
Indeed, d[T ⊕ 27](V) = ∅, because d(Z) = ∅, whereas
d′[T⊕27](V) = {27}. The user u derives r(d′), 1 `u Z(27),
which is not secure because r1(d) and r1(d′) are indistin-
guishable for u, but Z(27) holds just in the latter. �

In contrast to existing security notions [21], [29], [37],
we have defined data confidentiality over runs. This is essen-
tial to model and detect attacks, such as those in Examples
5.3 and 5.4, where an attacker infers sensitive information
from the transitions between states. For instance, the leakage
in Example 5.4 is due to the execution of the INSERT
command. Although the SELECT command is authorized
by the policy, u can use it to infer sensitive information
about the system’s state before the INSERT execution.

6. A Provably Secure PDP

We now present a PDP that provides both database
integrity and data confidentiality. We first explain the ideas
behind it using examples. Afterwards, we show that it
satisfies the desired security properties and has acceptable
overhead. Finally, we argue that it is more permissive than
existing access control solutions.

Figure 8 depicts our PDP f together with the functions
fint and fconf . Additional details about the PDP are given

in [23]. The PDP takes as input a state s and an action a
and outputs > iff both fint and fconf authorize a in s, i.e.,
iff a’s execution neither violates database integrity nor data
confidentiality. Note that our algorithm is not complete in
that it may reject some secure commands. However, from
the results in [21], [25], [28], it follows that no algorithm
can be complete and provide database integrity and data
confidentiality for the relational calculus.

Our PDP is invoked by the database system each time a
user u issues an action a to check whether u is authorized to
execute a. The PDP is also invoked whenever the database
system executes a scheduled trigger t: once to check if the
SELECT statement associated with t’s WHEN condition is
authorized and once, in case t is enabled, to check if t’s
action is authorized.

6.1. Enforcing Database Integrity

The function fint takes as input a state s and an action
a. If the system is not executing a trigger, denoted by
trg(s) = ε, fint checks (line 1) whether a is authorized
with respect to s. In line 2, fint checks whether a is the
current trigger’s condition. If this is the case, it returns
> because the triggers’ conditions do not violate database
integrity. Finally, the algorithm checks (line 3) whether a is
the current trigger’s action, and if this is the case, it checks
whether the current trigger trg(s) is authorized with respect
to s. The function auth , which checks if a is authorized with
respect to s, is a sound and computable under-approximation
of auth . Thus, any action authorized by fint is authorized
according to auth . This ensures database integrity. Note
that auth relies on the concept of determinacy [28] to de-
cide whether a query is determined by a set of views. Since
determinacy is undecidable [28], in auth we implement a
sound under-approximation of it, given in [23], that checks
syntactically if a query is determined by a set of views.

Example 6.1. Consider a database with three tables: R, T ,
and Z. The set U is {u, u′, admin} and the policy S is {〈⊕,
u, 〈SELECT, R〉, admin〉, 〈⊕∗, u, 〈SELECT,T 〉, admin〉,
〈⊕∗, u, 〈SELECT,Z 〉, admin〉}. There are two views
V = 〈v , admin, {x |T (x) ∧ Z(x)}, O〉 and W = 〈w, u,
{x |R(x) ∨ V (x)}, O〉. The user u tries to grant to u′

read access to W , i.e., he issues 〈⊕, u′, 〈SELECT,W 〉, u〉.
The PDP fint rejects the command and raises a security
exception because u is authorized to delegate the read
access only for T and Z but W ’s result depends also
on R, for which u cannot delegate read access. Assume
now that the policy is {〈⊕∗,u,〈SELECT,R〉,admin〉,
〈⊕∗,u,〈SELECT,T 〉,admin〉,〈⊕∗,u,〈SELECT,Z 〉,admin〉}.
In this case, fint authorizes the GRANT. The
reason is that W ’s definition can be equivalently
rewritten as {x |R(x) ∨ (T (x) ∧ Z(x))} and u is
authorized to delegate the read access for R, T , and Z. �

6.2. Enforcing Data Confidentiality

The function fconf , shown in Figure 8, takes as input an
action a, a state s, and a user u. Note that any user other than

B s is a state and a is an action
function f (s, a)

1. return fint(s, a) ∧ fconf (s, a, user(s, a))

B s is a state and a is an action
function fint(s, a)

1. if trg(s) = ε return auth(s, a)

2. else if a = cond(trg(s), s) return >
3. else if a = act(trg(s), s) return auth(s, trg(s))

4. else return ⊥

B s is a state, a is an action, and u is a user
function fconf (s, a, u)

1. switch a

2. case 〈u′, SELECT, q〉 : return secure(u, q, s)

3. case 〈u′, INSERT, R, t〉 : case 〈u′, DELETE, R, t〉 :

4. if leak(a, s, u) ∨ ¬secure(u, getInfo(a), s) return ⊥
5. for γ ∈ Dep(a,Γ)

6. if (¬secure(u, getInfoS(γ, a), s) ∨ ¬secure(u, getInfoV (γ, a), s))

7. return ⊥
8. case 〈⊕, u′′, pr , u′〉, 〈⊕∗, u′′, pr , u′〉 : return ¬leak(a, s, u)

9. return >
Figure 8: The PDP f uses the two subroutines fint and fconf . The former provides database integrity and the latter
provides data confidentiality with respect to the user user(s, a), which denotes either the user issuing the action,
when the system is not executing a trigger, or the trigger’s invoker.

the administrator is a potential attacker. The requirement for
fconf is that it authorizes only those commands that result
in secure judgments for u as required by Definition 5.3. To
achieve this, fconf over-approximates the set of judgments
that u can derive from a’s execution. For instance, the
algorithm assumes that u can always derive the trigger’s
condition from the run, even though this is not always the
case. Then, fconf authorizes a iff it can determine that all u’s
judgements are secure. This can be done by analysing just a
finite subset of the over-approximated set of u’s judgments.

In more detail, fconf performs a case distinction on the
action a (line 1). If a is a SELECT command (line 2),
fconf checks whether the query is secure with respect to the
current state s and the user u using the secure procedure.
If a is an INSERT or DELETE command (lines 3–7),
fconf checks (line 4), using the leak procedure, whether a’s
execution may leak sensitive information through the views
that u can read, as in Example 5.4. Afterwards, fconf also
checks (line 4) whether the information u can learn from
a’s execution, modelled by the sentence computed by the
procedure getInfo(a), is secure. In line 5–7, fconf computes
the set of all integrity constraints that a’s execution may
violate, denoted by Dep(a,Γ), and for all constraints γ, it
checks whether the information that u may learn from γ
is secure. The procedure getInfoS (respectively getInfoV)
computes the sentence modelling the information learned by
u from γ if a is executed successfully (respectively violates
γ). If a is a GRANT command (line 8), fconf checks whether
a’s successful execution discloses sensitive information to u.
In the remaining cases (line 9), fconf authorizes a.

Secure judgments. Determining if a given judgment is
secure is undecidable for RC [21], [25]. Hence, the secure
procedure implements a sound and computable under-ap-
proximation of this notion. We now present our solution.
Other sound under-approximations can alternatively be used
without affecting fconf ’s data confidentiality guarantees.

Let M = 〈D,Γ〉 be a system configuration, r, i `u φ be
a judgment, and s = 〈db, U, sec, T, V, c〉 be the i-th state in
r. As a first under-approximation, instead of the set of all
runs indistinguishable from ri, we consider the larger set

of all runs r′ whose last state s′ = 〈db′, U, sec, T, V, c′〉 is
such that the disclosed data in db and db′ are the same. Note
that if a judgment is secure with respect to this larger set,
it is secure also with respect to the set of indistinguishable
runs because the former set contains the latter. This larger
set depends just on the database state db and the policy
sec, not on the run or the attacker model AT Ku. Determin-
ing judgment’s security is, however, still undecidable even
on this larger set. We therefore employ a second under-
approximation that uses query rewriting. We rewrite the
sentence φ to a sentence φrw such that if r, i `u φ is not
secure for the user u, then [φrw]db = >. The formula φrw
is ¬φ>s,u∧φ⊥s,u, where φ>s,u and φ⊥s,u are defined inductively
over φ. A formal definition of secure is given in [23].

We now explain how we construct φ>s,u and φ⊥s,u. We
assume that both φ and V contain only views with the
owner’s privileges. The extension to the general case is
given in [23]. First, for each table or view o ∈ D ∪ V , we
create additional views representing any possible projection
of o. The extended vocabulary contains the tables in D,
the views in V , and their projections. For instance, given a
table R(x, y), we create the views Rx and Ry representing
respectively {y | ∃x.R(x, y)} and {x | ∃y.R(x, y)}. Second,
we compute the formula φ′ by replacing each sub-formula
∃x.R(x, y) in φ with the view Rx(y) associated with the
corresponding projection. Third, for each predicate R in the
formula φ′, we compute the sets R>s,u and R⊥s,u. The set R>s,u
(respectively R⊥s,u) contains all the tables and views K in the
extended vocabulary such that (1) K is contained in (respec-
tively contains) R, and (2) the user u is authorized to read
K in s, i.e., there is a grant 〈op, u, 〈SELECT,K ′〉, u′〉 ∈ sec
such that either K ′ = K or K is obtained from K ′ through
a projection. The formula φvs,u, where v ∈ {>,⊥}, is:

φvs,u =

∨
S∈R>

s,u
S(x) if φ = R(x) and v = >∧

S∈R⊥
s,u
S(x) if φ = R(x) and v = ⊥

¬ψ¬vs,u if φ = ¬ψ
ψvs,u ∗ γvs,u if φ = ψ ∗ γ and ∗ ∈ {∨,∧}
Qx.ψv

s,u if φ = Qx.ψ and Q ∈ {∃,∀}
φ otherwise

S
1 1
2 3
4 2

Database State
R
3

Q
4

V
1 1
2 3

Views
W
3
4

V = {x, y |S(x, y) ∧ (x = 1 ∨ y = 3)}

W = {x |R(x) ∨Q(x)}

Sx

1
3
2

Extended Vocabulary
Sy

1
2
4

Vx

1
3

Vy

1
2

Sx = {y | ∃x. S(x, y)}

Sy = {x | ∃y. S(x, y)}

Vx = {y | ∃x. V (x, y)}

Vy = {x | ∃y. V (x, y)}

Sy
>
s,u = {Vy}

Containment Sets

Sy
⊥
s,u = ∅

R>s,u = ∅

R⊥s,u = {W}

φ := (∃y. S(2, y)) ∧ (¬R(5) ∨ ∃y. S(4, y)) ≡ Sy(2) ∧ (¬R(5) ∨ Sy(4))
Original Sentence

φrw := ¬φ>s,u ∧ φ⊥s,u
Rewriting

φ>s,u := Sy(2)>s,u ∧ (¬R(5)⊥s,u ∨ Sy(4)>s,u) ≡ Vy(2) ∧ (¬W (5) ∨ Vy(4))

φ⊥s,u := Sy(2)⊥s,u ∧ (¬R(5)>s,u ∨ Sy(4)⊥s,u) ≡ >
Figure 9: Checking the security of the judgment r, 1 `u
(∃y. S(2, y)) ∧ (¬R(5) ∨ ∃y. S(4, y)) from Example 6.2.

The formulae are such that if φ>s,u holds, then φ holds and
if ¬φ⊥s,u holds, then ¬φ holds. To compute the sets R>s,u
and R⊥s,u, we check the containment between queries. Since
query containment is undecidable [2], we implement a sound
under-approximation of it, described in [23]. Other sound
under-approximations can be used as well.

Our φ>s,u and φ⊥s,u rewritings share similarities with the
low and high evaluations of Wang et al. [37]. Both try to
approximate the result of a query just by looking at the
authorized data. However, we use φ>s,u and φ⊥s,u to determine
a judgment’s security, whereas Wang et al. use evaluations
to restrict the query’s results only to authorized data.

Example 6.2. Consider a database with three
tables S, R, and Q, and two views V =
〈v, admin, {x, y |S(x, y) ∧ (x = 1 ∨ y = 3)}, O〉 and
W = 〈w, admin, {x |R(x)∨Q(x)}, O〉. The database state
db is db(S) = {(1, 1), (2, 3), (4, 2)}, db(R) = {3}, and
db(Q) = {4}, the set U is {u, admin}, and the policy sec is
{〈⊕, u, 〈SELECT, V 〉, admin〉, 〈⊕, u, 〈SELECT,W 〉, admin〉}.
Let the state s be 〈db, U, sec, ∅, {V,W}, ε〉 and the run r
be s. We want to check the security of r, 1 `u φ, where
φ := (∃y. S(2, y)) ∧ (¬R(5) ∨ ∃y. S(4, y)), for the user u.
Figure 9 depicts the database state db, the materializations
of the views V and W , and the materializations of the
views Sx, Sy, Vx, and Vy in the extended vocabulary. Gray
indicates those tables and views that u cannot read.

The rewriting process, depicted also in Figure 9, pro-
ceeds as follows. We first rewrite the formula φ as Sy(2)∧
(¬R(5) ∨ Sy(4)). The sets Sy

>
s,u, Sy⊥s,u, R>s,u, and R⊥s,u

are respectively {Vy}, ∅, ∅, and {W}. The formulae φ>s,u
and φ⊥s,u are respectively Sy(2)>s,u ∧ (¬R(5)⊥s,u ∨Sy(4)>s,u),
which is equivalent to Vy(2) ∧ (¬W (5) ∨ Vy(4)), and
Sy(2)⊥s,u ∧ (¬R(5)>s,u ∨ Sy(4)⊥s,u), which is equivalent to

>. They are both secure, as they depend only on V and W .
Furthermore, since φ>s,u holds in s, then φ holds as well.
Finally, φrw is ¬φ>s,u ∧ φ⊥s,u. Since φrw does not hold in s,
it follows that r, 1 `u φ is secure. �

6.3. Theoretical Evaluation

Our PDP provides the desired security guarantees and its
data complexity, i.e., the complexity of executing f when
the action, the policy, the triggers, and the views are fixed,
is AC 0. This means that f can be evaluated in logarithmic
space in the database’s size, as AC 0 ⊆ LOGSPACE , and
evaluation is highly parallelizable. Note that secure’s data
complexity is AC 0 because it relies on query evaluation,
whose data complexity is AC 0 [2]. In contrast, all other
operations in f are executed in constant time in terms
of data complexity. Note also that on a single processor,
f ’s data complexity is polynomial in the database’s size.
We believe that this is acceptable because the database is
usually very large, whereas the query, which determines the
degree of the polynomial, is small. The proof of Theorem
6.1 is given in [23].

Theorem 6.1. Let P = 〈M,f〉 be an extended configu-
ration, where M is a system configuration and f is as
above. The PDP f (1) provides data confidentiality with
respect to P , u, AT Ku, and ∼=P,u, for any user u ∈ U , and
(2) provides database integrity with respect to P . Moreover,
the data complexity of f is AC 0.

As the Examples 6.3 and 6.4 below show, f is more
permissive than existing PDPs for those actions that violate
neither database integrity nor data confidentiality.

Example 6.3. Our PDP is more permissive than existing
mechanisms for commands of the form GRANT SELECT
ON V TO u, where V is a view with owner’s privileges, u
is a user, and the statement is issued by the view’s owner o.
Such mechanisms, in general, authorize the GRANT iff o is
authorized to delegate the read permission for all tables and
views that occur in v’s definition. Consider again Example
6.1. Our PDP authorizes 〈⊕, u′, 〈SELECT,W 〉, u〉 under the
policy S′. However, existing mechanisms reject it because
u is not directly authorized to read V , although u can read
the underlying tables. Our PDP also authorizes all the secure
GRANT statements authorized by existing mechanisms. �

Example 6.4. Our PDP is more permissive than the mech-
anisms used in existing DBMSs for secure SELECT state-
ments. Such mechanisms, in general, authorize a SELECT
statement issued by a user u iff u is authorized to read
all tables and views used in the query. They will reject
the query in Example 6.2 even though the query is secure.
Furthermore, any secure SELECT statement authorized by
them will be authorized by our solution as well. Also the
PDP proposed by Rizvi et al. [29] rejects the query in
Example 6.2 as insecure. However, our solution and the
proposal of Rizvi et al. [29] are incomparable in terms
of permissiveness, i.e., some secure SELECT queries are
authorized by one mechanism and not by the other. �

0 20000 40000 60000 80000 100000

0

1

2

3

Number of tuples

Ti
m

e
[m
s]

fint
fconf

(a) Example 6.1

0 20000 40000 60000 80000 100000

0

200

400

600

Number of tuples

Ti
m

e
[m
s]

fint
fconf

Command Execution

(b) Example 6.2
Figure 10: PDP Execution time.

6.4. Implementation

To evaluate the feasibility and security of our approach
in practice, we implemented our PDP in Java. The proto-
type, available at [22], implements both our PDP and the
operational semantics of our system model. It relies on the
underlying PostgreSQL database for executing the SELECT,
INSERT, and DELETE commands. Note that our prototype
also handles all the differences between the relational cal-
culus and SQL. For instance, it translates every relational
calculus query into an equivalent SELECT SQL query over
the underlying database. We performed a preliminary exper-
imental evaluation of our prototype. Our experiments were
run on a PC with an Intel i7 processor and 32GB of RAM.
Note that we materialized the content of all the views.

Our evaluation has two objectives: (1) to empirically
validate that the prototype provides the desired security
guarantees, and (2) to evaluate its overhead. For (1), we
ran the attacks in §2 against our prototype. As expected, our
PDP prevents all the attacks. For (2), we simulated Examples
6.1 and 6.2 on database states where the number of tuples
ranges from 1,000 to 100,000. Figure 10 shows the PDP’s
execution time. Our results show that our solution is feasible.
In more detail, fint ’s execution time does not depend on the
database size, whereas fconf ’s execution time does. We be-

0 20000 40000 60000 80000 100000

200

400

600

Number of tuples

Ti
m

e
[m
s]

Query execution Query rewriting

Figure 11: Example 8 : fconf ’s execution time.

lieve that the overhead introduced by the PDP is acceptable
for a proof of concept. Even with 100,000 tuples, the PDP’s
running time is under a second. In Example 6.2, fconf ’s
execution time is comparable to the execution time of the
user’s query. As Figure 11 shows, fconf ’s query rewriting
time does not depend on the database’s size, whereas fconf ’s
query execution time does.

To improve fconf ’s performance, one could strike a
different balance between simple syntactic checks and our
query rewriting solution. This, however, would result in
more restrictive PDPs. We will investigate further optimiza-
tions as a future work.

7. Related Work and Discussion

We compare our work against two lines of research:
database access control and information flow control. Both
of these have similar goals, namely preventing the leakage
and corruption of sensitive information.

7.1. Database Access Control

Discretionary Database Access Control. Our framework
builds on prior research in database access control [21],
[29], [37] as well as established notions from database
theory, such as determinacy [28] and instance-based deter-
minacy [25].

Specifically, our notion of secure judgments extends
instance-based determinacy from database states to runs,
while data confidentiality extends existing security notions
[21], [29], [37] to dynamic settings, where both the database
and the policy may change. Similarly, our indistinguisha-
bility notion extends those in [21], [37] from database
states to runs. Finally, our formalization of auth relies
on determinacy to decide whether the content of a view is
fully determined by a set of other views.

Griffiths and Wade propose a PDP [20] that prevents
Attacks 2 and 3 by using syntactic checks and by removing
all views whose owners lack the necessary permissions. In
contrast, we prevent the execution of GRANT and REVOKE
operations leading to inconsistent policies.

Mandatory Database Access Control. Research on manda-
tory database access control has historically focused on
Multi-Level Security (MLS) [15], where both the data and
the users are associated with security levels, which are com-
pared to control data access. Our PDP extends the SQL dis-
cretionary access control model with additional mandatory
checks to provide database integrity and data confidentiality.
In the following, we compare our work with the access
control policies and semantics used by MLS systems.

With respect to policies, our work uses the SQL access
control model, where policies are sets of GRANT statements.
In this model, users can dynamically modify policies by del-
egating permissions. In contrast, MLS policies are usually
expressed by labelling each subject and object in the system
with labels from a security lattice [31]. The policy is, in
general, fixed (cf. the tranquillity principle [31]).

With respect to semantics, existing MLS solutions are
based on the so-called Truman model [29], where they
transparently modify the commands issued by the users to
restrict the access to only the authorized data. In contrast,
we use the same semantics as SQL, that is, we execute
only the secure commands. This is called the Non-Truman
model [29]. For an in-depth comparison of these access con-
trol models, see [21], [29]. Operationally, MLS mechanisms
use poly-instantiation [24], which is neither supported by the
relational model nor by the SQL standard, and requires ad-
hoc extensions [15], [32]. Furthermore, the operational se-
mantics of MLS systems differs from the standard relational
semantics. In contrast, our operational semantics supports
the relational model and is directly inspired by SQL.

The above differences influence how security properties
are expressed. Data confidentiality, which relies on a precise
characterization of security based on a possible worlds se-
mantics, is a key component of the Non-Truman model (and
SQL) access control semantics. Similarly, database integrity
requires that any “write” operation is authorized according
to the policy and is directly inspired by the SQL access
control semantics. The security properties in MLS systems,
in contrast, combine the multilevel relational semantics [15],
[32] with MLS and BIBA properties [31].

MLS systems prevent attacks similar to Attacks 4 and
5 using poly-instantiated tuples and triggers [32], [35],
whereas attacks similar to Attack 1 cannot be carried out
because triggers with activator’s privileges are not sup-
ported [35]. The SeaView system [15], which combines
discretionary access control and MLS, additionally prevents
attacks similar to Attacks 2 and 3 by relying on Griffiths
and Wade’s PDP [20]. However, these solutions cannot be
applied to SQL databases for the aforementioned reasons.

7.2. Information Flow Control

Various authors have applied ideas from information
flow control to databases. Davis and Chen [14] study
how cross-application information flows can be tracked
through databases. Other researchers [13], [26], [33] present
languages for developing secure applications that use

databases. They employ secure type systems to track in-
formation flows through databases. However, they neither
model nor prevent the attacks we identified because they
do not account for the advanced database features and the
strong attacker model we study in this paper.

Schultz and Liskov [34] extend decentralized informa-
tion flow control [27] to databases, based on concepts from
multi-level security [15]. They identify one attack on data
confidentiality that exploits integrity constraints. Their solu-
tion relies on poly-instantiation [24] and cannot be applied to
SQL databases that do not support multi-level security. Their
mechanism neither prevents the other attacks we identify nor
provides provable and precise security guarantees.

Several researchers have studied attacker models in
information flow control [4], [18]. Giacobazzi and Mas-
troeni [18] model attackers as data-flow analysers that
observe the program’s behaviour, whereas Askarov and
Chong [4] model attackers as automata that observe the
program’s events. They both model passive attackers, who
can observe, but do not influence, the program’s execution.
In contrast, our attacker is active and interacts with the
database.

7.3. Discussion

Historically, database access control and information
flow control rely on different foundations, formalisms, se-
curity notions, and techniques. We see our paper as a
starting point for bridging these topics: we combine database
access control theory with an operational semantics and
an attacker model, which are common in information flow
control, but have been largely ignored in database access
control. We thereby give a precise logical characterization
of the attacker’s capabilities and of a judgment’s security.
Furthermore, our indistinguishability notion has similari-
ties with the low-equivalence notions used in [5], [6], [9],
whereas both data confidentiality and the notion of secure
judgments have a precise characterization as instances of
non-interference [19], [30]; see [23] for more details.

We believe our framework provides a basis for (1)
further investigating the connections between these two
topics, (2) applying information flow mechanisms, such as
type systems or multi-execution [16], to database access
control, and (3) investigating how integrity notions used in
information flow control can best be applied to databases.

8. Conclusion

Motivated by practical attacks against existing databases,
we have initiated several new research directions. First, we
developed the idea that attacker models should be studied
and formalized for databases. Rather than being implicit,
the relevant models must be made explicit, just like when
analysing security in other domains. In this respect, we pre-
sented a concrete attacker model that accounts for relevant
features of modern databases, like triggers and views, and
attacker inference capabilities.

Second, access control mechanisms must be designed to
be secure, and provably so, with respect to the formalized
attacker capabilities. This requires research on mechanism
design, complemented by a formal operational semantics
of databases as a basis for security proofs. We presented
such a mechanism, proved that it is secure, and built and
evaluated a prototype of it in PostgreSQL. As a future work,
we will extend our framework and our PDP to directly
support the SQL language, and we will investigate efficiency
improvements for our PDP.
Acknowledgments. We thank Ùlfar Erlingsson, Erwin Fang,
Andreas Lochbihler, Ognjen Maric, Mohammad Torabi
Dashti, Dmitriy Traytel, Petar Tsankov, Thilo Weghorn, Der-
Yeuan Yu, Eugen Zalinescu, as well as the anonymous
reviewers for their comments.

References

[1] (2014, Sep.) Manage trigger security, Microsoft MSDN
Library. [Online]. Available: http://msdn.microsoft.com/en-us/library/
ms191134.aspx/

[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley Reading, 1995, vol. 8.

[3] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and
W. Rjaibi, “Extending relational database systems to automatically
enforce privacy policies,” in Proc. 2005 IEEE Int. Conf. Data Engi-
neering.

[4] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in Proc. 2012 IEEE
Symp. Computer Security Foundations.

[5] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassi-
fication, encryption and key release policies,” in Proc. 2007 IEEE
Symp. Security and Privacy.

[6] ——, “Tight enforcement of information-release policies for dynamic
languages,” in Proc. 2009 IEEE Symp. Computer Security Founda-
tions.

[7] G. Bender, L. Kot, and J. Gehrke, “Explainable security for relational
databases,” in Proc. 2014 ACM Intl. Conf. Management of data.

[8] G. M. Bender, L. Kot, J. Gehrke, and C. Koch, “Fine-grained dis-
closure control for app ecosystems,” in Proc. 2013 ACM Intl. Conf.
Management of data.

[9] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic,
“Reactive noninterference,” in Proc. 2009 ACM Conf. Computer and
Communications Security.

[10] P. A. Bonatti, S. Kraus, and V. Subrahmanian, “Foundations of secure
deductive databases,” IEEE Trans. Knowl. Data Eng., vol. 7, no. 3,
1995.

[11] A. Brodsky, C. Farkas, and S. Jajodia, “Secure databases: Constraints,
inference channels, and monitoring disclosures,” IEEE Trans. Knowl.
Data Eng., vol. 12, no. 6, 2000.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, “The maude 2.0 system,” in Rewriting Techniques and
Applications. Springer, 2003.

[13] B. J. Corcoran, N. Swamy, and M. Hicks, “Cross-tier, label-based
security enforcement for web applications,” in Proc. 2009 ACM Intl.
Conf. Management of data.

[14] B. Davis and H. Chen, “DBTaint: cross-application information flow
tracking via databases,” Proc. 2010 USENIX Conf. Web Application
Development.

[15] D. E. Denning and T. F. Lunt, “A multilevel relational data model,”
in Proc. 1987 IEEE Symp. Security and Privacy.

[16] D. Devriese and F. Piessens, “Noninterference through secure multi-
execution,” in Proc. 2010 IEEE Symp. Security and Privacy.

[17] C. Farkas and S. Jajodia, “The inference problem: a survey,” ACM
SIGKDD Explorations, vol. 4, no. 2, 2002.

[18] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: Param-
eterizing non-interference by abstract interpretation,” in Proc. 2004
ACM Symp. Principles of Programming Languages.

[19] J. A. Goguen and J. Meseguer, “Security policies and security mod-
els,” in IEEE Symp. Security and Privacy, 1982.

[20] P. P. Griffiths and B. W. Wade, “An authorization mechanism for a
relational database system,” ACM Trans. on Database Syst., vol. 1,
no. 3, 1976.

[21] M. Guarnieri and D. Basin, “Optimal security-aware query process-
ing,” in Proc. 2014 Int. Conf. Very Large Data Bases.

[22] M. Guarnieri, S. Marinovic, and D. Basin. Strong and Provably Secure
Database Access Control — Prototype and Maude models. [Online].
Available: http://www.infsec.ethz.ch/research/projects/FDAC.html

[23] ——, “Strong and provably secure database access control,” Tech.
Rep., 2015. [Online]. Available: http://arxiv.org/abs/1512.01479

[24] S. Jajodia and R. Sandhu, “Polyinstantiation integrity in multilevel
relations,” in Proc. 1990 IEEE Symp. Security and Privacy.

[25] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu,
“Query-based data pricing,” in Proc. 2012 ACM Symp. Principles of
Database Systems.

[26] P. Li and S. Zdancewic, “Practical information flow control in web-
based information systems,” in Proc. 2005 IEEE Workshop on Com-
puter Security Foundations.

[27] A. C. Myers and B. Liskov, “A decentralized model for information
flow control,” in Proc. 1997 ACM Symp. Operating Systems Princi-
ples.

[28] A. Nash, L. Segoufin, and V. Vianu, “Views and queries: Determinacy
and rewriting,” ACM Trans. Database Syst., vol. 35, no. 3, 2010.

[29] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” in Proc. 2004
ACM Int. Conf. Management of data.

[30] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, 2003.

[31] P. Samarati and S. Capitani de Vimercati, “Access Control: Policies,
Models, and Mechanisms,” Springer Lecture Notes in Computer
Science, vol. 2171, 2001.

[32] R. Sandhu and F. Chen, “The multilevel relational (MLR) data
model,” ACM Trans. Inf. Syst. Sec., vol. 1, no. 1, 1998.

[33] D. Schoepe, D. Hedin, and A. Sabelfeld, “SeLINQ: tracking infor-
mation across application-database boundaries,” in Proc. 2014 ACM
Intl. Conf. Functional Programming.

[34] D. Schultz and B. Liskov, “IFDB: decentralized information flow
control for databases,” in Proc. 2013 ACM European Conf. Computer
Systems.

[35] K. Smith and M. Winslett, “Multilevel secure rules: Integrating the
multilevel secure and active data models,” in Database Security VI:
Status and Prospects. North-Holland, 1993.

[36] T. S. Toland, C. Farkas, and C. M. Eastman, “The inference prob-
lem: Maintaining maximal availability in the presence of database
updates,” Computers & Security, vol. 29, no. 1, 2010.

[37] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun,
“On the correctness criteria of fine-grained access control in relational
databases,” in Proc. 2007 Int. Conf. Very Large Data Bases.

